Reorganisation eines speziellen Internetservers

Diplomarbeit
von
Helmut Riesslegger

November 2000

Technische Universität Graz

Institut für Informationsverarbeitung und Computergestützte neue Medien

Begutachtet von
o.Univ.-Prof. Dr.phil. Dr.h.c. Hermann Maurer

Betreut von
DI Dr.techn. Peter Sammer
Danksagung

An dieser Stelle bedanke ich mich beim Begutachter dieser Diplomarbeit, o. Univ.-Prof. Dr. phil. Dr. h.c. Hermann Maurer und meinem Betreuer DI Dr. techn. Peter Sammer.

Kurzfassung

Ein Teil dieser Arbeit beschreibt ausführlich die Recherchen und Konvertierungen für die Präsentation der wissenschaftlichen Arbeiten, die am IICM erstellt wurden. Er dient auch der Dokumentation, die insbesondere bei der Präsentation personenbezogener Daten hilfreich ist.
Inhaltsverzeichnis

1 Einleitung ... 2

2 Reorganisationsansätze ... 6

2.1 Überblick ... 6

2.2 Wertanalyse .. 7

2.2.1 Entwicklung der Wertanalyse.. 7
2.2.2 Anwendungsgebiete der Wertanalyse.. 7
2.2.3 Einige spezielle Formen der Wertanalyse ... 8

2.3 Gründe für den Einsatz der Wertanalyse .. 8

2.4 Der Einfluss der Wertanalyse auf das Projekt .. 9

3 Wertanalyse im Projekt MUCH .. 12

3.1 Grobziele und Arbeitsplanung ... 12

3.2 Die Ausgangssituation ... 13

3.2.1 Informationen beschaffen ... 14
3.2.1.1 Der Hyperwave Information Server .. 14
3.2.1.2 Designüberlegungen ... 18
3.2.1.3 Das Recht im Internet .. 20
3.2.1.4 MUCH und das Urheberrecht .. 21
3.2.1.5 Gefahrenpotenziale bei Webservern .. 22
3.2.2 Kosten festlegen ... 24
3.2.3 Funktionen feststellen ... 26
3.2.4 Entwicklungen einschätzen ... 27
3.2.4.1 Soziale Entwicklungen ... 27
3.2.4.2 Wirtschaftliche Entwicklungen .. 30
3.2.4.3 Politische Entwicklungen ... 31
3.2.4.4 Technische Entwicklungen .. 33
3.2.5 Ausgangssituation darstellen .. 42

3.3 Zielsystem entwickeln .. 45

3.3.1 Die Zielgruppe .. 45
3.3.1.1 Potenzielle Auftraggeber ... 45
3.3.1.2 Angehörige und Freunde des Instituts ... 46
3.3.1.3 Studierende .. 46
3.3.1.4 Informationssuchende ... 46

3.4 Ideen entwickeln ... 47

3.4.1 Ideen entwickeln ... 51
3.4.1.1 Thematische Gliederung bei MUCH ... 51
3.4.1.2 Namenskonventionen bei MUCH ... 52
3.4.1.3 Informationsverwaltung für MUCH ... 52
3.4.1.4 Präsentation des Datenbankinhalts .. 52
3.4.1.5 Unterschiede zwischen HTML und XML ... 56
3.4.1.6 Verwendete Bildformate ... 58
3.4.1.7 Externe Links ... 59

3.5 Lösung verwirklichen .. 61

3.5.1 Wissenschaftliche Arbeiten bei MUCH .. 62
3.5.2 Recherchen im Internet ..63
3.5.3 Diplomarbeiten..65
3.5.3.1 Quellensuche ...65
3.5.3.2 Quellenauswahl ..65
3.5.3.3 Informationsbeschaffung ..65
3.5.3.4 Informationsbearbeitung ..72
3.5.3.5 Informationsspeicherung in der lokalen Datenbank ..76
3.5.4 Dissertationen ...77
3.5.4.1 Quellensuche ...77
3.5.4.2 Quellenauswahl ..77
3.5.4.3 Informationsbeschaffung ..78
3.5.4.4 Informationsbearbeitung und Speicherung ..78
3.5.5 Habilitationen ..78
3.5.6 Veröffentlichen auf dem Webserver ...79

4 Anhang ...82

4.1 Anhang A: Der Wertanalyse Arbeitsplan ..82
4.1.1 WA – Arbeit vorbereiten ..83
4.1.1.1 WA – Grobziele formulieren ...83
4.1.1.2 WA – Arbeit planen ...83
4.1.2 Ausgangssituation ermitteln ..83
4.1.2.1 Informationen beschaffen ...83
4.1.2.2 Kosten festlegen ..84
4.1.2.3 Funktionen feststellen ..84
4.1.2.4 Entwicklungen einschätzen ..86
4.1.2.5 Ausgangssituation darstellen ...86
4.1.3 Zielsystem entwickeln ..87
4.1.3.1 Funktionsziele entwickeln ...87
4.1.3.2 Kostenziele entwickeln ..87
4.1.3.3 Beurteilungsbedingungen festlegen ...87
4.1.3.4 Zielsystem darstellen ..87
4.1.4 Ideen entwickeln ..87
4.1.4.1 Lösungsansätze entwickeln ..88
4.1.4.2 Lösungsmöglichkeiten ausarbeiten ..88
4.1.5 Lösungsvorschläge auswählen ...88
4.1.5.1 Lösungsmöglichkeiten beurteilen ..88
4.1.5.2 Lösungsvorschläge darstellen ..88
4.1.6 Lösung verwirklichen ..88
4.1.6.1 Lösung bestimmen ...88
4.1.6.2 Lösungsverwirklichung planen ...89
4.1.6.3 Lösung verwirklichen ...89

4.2 Anhang B: Muster einer Datenschutzanfrage ..90

4.3 Anhang C: Die chronologische Entwicklung von XML ...91

4.4 Glossar ..92

4.5 Abbildungsverzeichnis ...97

4.6 Verzeichnis der Tabellen ..97

4.7 Literaturverzeichnis ...98

4.8 Webreferenzen ...102

4.9 Normen ..103
Kapitel 1
Einleitung
1 Einleitung

MUCH – Das Museum im Internet

Das MUCH Projekt geht einen etwas anderen Weg: Es werden historische Informationen präsentiert. Diese sind nach ihrer Fertigstellung nahezu unveränderlich. Der Serverinhalt ist jedoch nicht statisch, denn selbst nach Ende des Projekts können neue Inhalte generiert werden. Die am IICM durchgeführten Projekte liefern

1 Kundenvorteil ist ident mit Unique Selling Position (USP)

Am Institut für Informationsverarbeitung und Computergestützte neue Medien (IICM) wurden seit der Gründung eine Vielzahl von Projekten durchgeführt:

- Mehr als 400 Diplomarbeiten und Dissertationen wurden verfasst
- Zu mehr als 1000 Personen bestand direkter und intensiver Kontakt.

Vom Primärdokument\(^3\) zum Internet Museum

Die meisten der für das MUCH Projekt benötigten Dokumente liegen nicht in digitaler Form vor und müssen für eine Darstellung im WWW digitalisiert werden. Zu den dafür erforderlichen Tätigkeiten gehören unter anderem das manuelle Erfassen, Scannen und Katalogisieren von Bildern.

Viele Informationen stehen bereits in digitaler Form zur Verfügung. Dabei wurden die für die jeweiligen Anforderungen optimalen Fileformate verwendet. Ein Beispiel sind die für die Bearbeitung von Diplomarbeiten wichtigen Daten:

- Eine Liste der Diplomanden des IICM wurde im MS Excel Format zur Verfügung gestellt.
- Kurzfassungen der Arbeiten existieren in HTML oder Textformat.

\(^2\) Year-2-Kilo = Jahr 2000

\(^3\) Primärdokument oft gleichbedeutend mit Originalquelle, Quelle, Originaldokument [Rauch93]
• Informationen von der Bibliothek der TU Graz liegen in HTML vor.
• Volltexte einiger Arbeiten sind zusätzlich als MS Word oder Adobe Acrobat Dateien verfügbar.

Da all diese Informationen in der endgültigen Fassung gemeinsam präsentiert werden, ist es nötig, Form und Format dieser Dokumente zu vereinheitlichen.

Im Zuge der Arbeit am Projekt MUCH wurde unter anderem Software implementiert die Informationen aus verschiedenen Quellen in eine Datenbank einfügt und verifiziert. Skripts wurden entwickelt, um diese Informationen in einer ansprechenden Form auf dem Hyperwave Information Server zu präsentieren. Weiters wurden im Rahmen der Diplomarbeit interdisziplinäre Recherchen durchgeführt. Daraus gewonnene Erkenntnisse aus technischen, wirtschaftswissenschaftlichen und juristischen Bereichen wurden an geeigneten Stellen in die vorliegende schriftliche Präsentation integriert.

Im nächsten Kapitel werden fünf Reorganisationsansätze gegenübergestellt. Auf den Wertanalyseansatz wird genauer eingegangen. Die Grundschritte dieses Ansatzes prägen die Struktur von Kapitel 3 in dem die Vorgangsweise beschrieben wird und der praktische Teil, der im Rahmen dieser Arbeit implementiert wurde, dokumentiert ist.
Kapitel 2
Reorganisationsansätze
2 Reorganisationsansätze

In diesem Kapitel werden vergleichend fünf Reorganisationsmethoden vorgestellt. Die Entwicklung der Wertanalyse wird skizziert, Anwendungsgebiete und spezielle Formen der Wertanalyse werden vorgestellt. Einige Vorteile dieses Ansatzes werden erläutert und spezielle Anpassungen an das Projekt MUCH erklärt.

2.1 Überblick

In Tabelle 1 werden die Grundschritte von fünf Reorganisationsmethoden gegenübergestellt. [Ofner00]

<table>
<thead>
<tr>
<th>ORG - Ansatz nach REFA</th>
<th>IDEALS - Konzept nach G. Nadler</th>
<th>REFA - 6 Stufen Methode</th>
<th>Systems Engineering</th>
<th>Wertanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfassen des Ist-Zustands</td>
<td>Definiere die Funktion</td>
<td>Ziele setzen</td>
<td>Zielsuche (Situationsanalyse, Zielformulierung)</td>
<td>WA – Arbeit vorbereiten</td>
</tr>
<tr>
<td>Kritik des Ist-Zustands</td>
<td>Aufgaben abgrenzen</td>
<td></td>
<td></td>
<td>Ausgangssituation ermitteln</td>
</tr>
<tr>
<td>Entwickeln des Soll-Zustands</td>
<td>Entwirf das Ideal</td>
<td>Ideale Lösungen suchen</td>
<td>Lösungssuche (Synthese, Analyse)</td>
<td>Ideen entwickeln</td>
</tr>
<tr>
<td></td>
<td>Entwickle das Optimum</td>
<td>Daten sammeln und praktikable Lösungen entwickeln</td>
<td></td>
<td>Lösungsvorschläge auswählen</td>
</tr>
<tr>
<td>Einführen des Soll-Zustands</td>
<td>Ergebnisse umsetzen</td>
<td>Optimale Lösung auswählen</td>
<td>Auswahl (Bewertung, Entscheidung)</td>
<td>Lösungen verwirklichen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lösung einführen und Zielerfüllung kontrollieren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Problemlösungsmethoden im Überblick
Der um 1960 entwickelte, vollkommen Ist-orientierte ORG – Ansatz nach REFA ist nur zur Verbesserung bereits bestehender Systeme geeignet:

- Bei der Herangehensweise wird der derzeitige Zustand kritisiert.
- Darauf aufbauend wird ein Sollzustand entwickelt und eingeführt.
- Der Ist-Zustand wird lediglich als ein mangelhafter Soll-Zustand angesehen.

Das IDEALS-Konzept nach G. Nadler hingegen ist ein rein Soll-Zustandsorientierter Ansatz. Die REFA - 6 Stufen Methode, der Systems Engineering Problemlösungszyklus und der Wertanalysearbeitsplan können als Mischformen eingestuft werden, und sind sowohl für die Verbesserung bestehender, als auch für die Entwicklung neuer Systeme geeignet.

All diesen Vorgangsweisen ist gemeinsam, dass sie das Projekt einer umfassenden Analyse unterziehen. Dies macht sie zwar für eine Vielzahl von Problemstellungen geeignet, allerdings ist ein genaues befolgen der Arbeitspläne extrem aufwendig. Oft bewirken spezielle Situationen oder Zielvorgaben, dass einzelne Schritte, abhängig vom Projekt, unterschiedlich intensiv berücksichtigt werden.

2.2 Wertanalyse

2.2.1 Entwicklung der Wertanalyse

In letzter Zeit wird an Stelle des Begriffes Wertanalyse häufig der Begriff "Value Management" verwendet.

2.2.2 Anwendungsgebiete der Wertanalyse

Die Wertanalyse ist anwendungsneutral. Sie kann in den unterschiedlichsten Bereichen angewendet werden.

Beispiele dafür sind:
- Sach- und Dienstleistungen
- Organisations- und Verwaltungsabläufe
- Informationsinhalte und Informationsprozesse

2.2.3 Einige spezielle Formen der Wertanalyse

Da das System der Wertanalyse sehr flexibel angewandt werden kann, haben sich viele ähnliche, auf spezielle Probleme zugeschnittene, Formen der Wertanalyse entwickelt. Beispiele dafür sind (siehe [Ofner00]):

- Informationswertanalyse (IWA)
- Kommunikations- und Informationswertanalyse (KIWA)
- Administration Value Analysis (AVA)
- Öko Wertanalyse
- Value Analysis of Management Practices (VAMP)

2.3 Gründe für den Einsatz der Wertanalyse

Für Verwendung der Wertanalyse sprechen viele Gründe:

- Der Kunde ist König.

- Die Wertanalyse ist eine normierte Vorgehensweise.
 DIN 69910, 1996 ersetzt durch VDI 2800
 ÖNORM A 6750 – 6757

- Die Wertanalyse ist universell einsetzbar.
 Bei einer Erhebung des Instituts für Wirtschafts- und Betriebswissenschaften der TU Graz wurden von den Befragten die folgenden Aussagen gemacht: [Schaller95]
 - 78 % der Anwender setzen die Wertanalyse an gegenständlichen Objekten ein.
 - 58 % verwenden die Wertanalyse zur Wertgestaltung (Entwicklung).
 - Die Entwicklungszeit verkürzte sich durchschnittlich um 28 %.
 - Die durchschnittlichen Herstellkosten sanken um 22 %.
• Die Wertanalyse wird von Beteiligten und Betroffenen akzeptiert. Im Gegensatz zu "Business Process Reengineering" bei dem es zu radikalen Eingriffen kommt, wird bei der Wertanalyse auch auf die Umwelt und auf die Bedürfnisse der Beteiligten Rücksicht genommen.

• Kreativitätssteigerung durch Einführung von Funktionen zur Objektbeschreibung. Durch diese Vorgehensweise werden Denkblockaden beseitigt und neue Ideen geboren. Die schöpferische Phase ist von der bewertenden getrennt. Dieses Vorgehen ähnelt dem Brainstorming. [DeBono92] [Ofner00a]

• Die Wertanalyse kann flexibel an spezielle Erfordernisse angepasst werden. Die Wertanalyse kann für die Realisierung eines kompletten Projekts eingesetzt werden, oder nur ein Teilschritt innerhalb eines komplexen Projektplans sein. Oft werden nur einzelne Schritte aus dem Wertanalyse Arbeitsplan eingesetzt, um neue Aspekte eines Objekts zu erforschen.

• Gute Erfahrungen mit der Wertanalyse. In den meisten Betrieben wird die Wertanalyse nach einem erfolgreich abgeschlossenem Projekt weiter eingesetzt. [Ofner00]

2.4 Der Einfluss der Wertanalyse auf das Projekt

Im Zuge meiner Recherchen über Reorganisation absolvierte ich die Ausbildung zum Wertanalyse-Koordinator 4 und bin dadurch zum Planen, Organisieren und Überwachen aller Wertanalyse-Aktivitäten in Sach- und Dienstleistungsbereichen befähigt. Die Teilnahme an mehreren Wertanalyseprojekten zeigte mir, dass die Wertanalyse funktioniert.

• Datenschutzgesetz
• Urheberrecht
• Patentrecht
• Telekommunikationsgesetz
• Signaturgesetz

4 VDI Zentrum Wertanalyse, Zentrum Wertanalyse WIFI Österreich
5 Ein Problem ist eine Diskrepanz zwischen Ist- und Sollzustand.

- Quellensuche
- Quellenauswahl
- Informationsbeschaffung
- Informationsbearbeitung und Erstellung der notwendigen Tools
- Informationsspeicherung in der Datenbank
- Veröffentlichen auf dem Webserver

Diese Dokumentation ist unbedingt nötig, denn es kann nicht ausgeschlossen werden, dass eine Anfrage nach dem Datenschutzgesetz zu einem der Einträge gestellt wird. Eine Musterdatenschutzanfrage ist im Anhang zu finden.
Kapitel 3
Wertanalyse im Projekt MUCH
3 Wertanalyse im Projekt MUCH

3.1 Grobziele und Arbeitsplanung

Unter anderem werden folgende Themen präsentiert:

- Personen
 - Adjunct Professors
 - Besucher und Vortragende
 - Diplomanden
 - Dissertanten
 - Habilitanden
 - ehemalige und aktuelle Mitarbeiter
 - Gastprofessoren
- Projekte zu den Themen
 - Theorie (formale Sprachen)
 - Datenstrukturen
 - BTX
 - Multimedia
 - Hypermedia, WWW
- Lehre
 - Lehrveranstaltungen
 - Diplomarbeiten, Dissertationen und Habilitationen
 - Publikationen
 - Veranstaltete Tagungen (Konferenzen)
- Ausstattung
- Anekdoten
In diesem Museum werden (nach Fertigstellung des Projekts) historische Inhalte auf einem Hyperwave Information Server der neuesten Generation präsentiert. Da sich Internetinhalte ständig ändern, soll in diesem Zusammenhang (Museum) auf Links zu anderen Servern verzichtet werden.

3.2 Die Ausgangssituation

Dieser zweite Grundschritt der Wertanalyse setzt sich aus den folgenden Teilschritten zusammen [ÖNORM A 6757]:

- Informationen beschaffen
 Das Sammeln, Ordnen und Verarbeiten von Informationen, die aus der Sicht der gestellten Aufgabe und des gestellten Zieles notwendig sind, soll dazu beitragen, Schwerpunkte für die Arbeit zu erkennen, Erkenntnisse zu formulieren, und Zusammenhänge aufzuzeigen. Dazu gehören unter anderem:
 - Das Sichten wichtiger Datenquellen.
 - Das Berücksichtigen einiger besonderer Fähigkeiten des Hyperwave Information Servers (HIS).
 - Benutzerfreundlichkeit und Designüberlegungen für Webpräsentationen.
 - Das Untersuchen relevanter Rechtsthemen.
 - Das Abschätzen von besonderen Gefahrenpotenzialen für Webserver und das Aufzeigen einiger geeigneter Gegenmaßnahmen.

- Kosten festlegen
 Bei Softwareprodukten sind die Gesamtkosten über die Einsatzzeit des Produktes von höchstem Interesse. Dies wird anhand der lokalen Datenbank, die für das Projekt MUCH am IICM erstellt wurde erläutert.

- Funktionen feststellen
 Das Feststellen der zu erfüllenden Funktionen ist einer der wichtigsten Schritte der Wertanalyse. Dabei wird die Ausgangslage für die kreative Phase geschaffen.

- Entwicklungen einschätzen
 Entwicklungen, die sich aus dem Umfeld ergeben, sollen erfasst, wenn möglich in ihren Auswirkungen abgeschätzt und aufgezeigt werden. Die folgenden Bereiche werden dabei besonders beachtet:
 - Soziale Veränderungen
 - Politische Veränderungen
 - Wirtschaftliche Entwicklungen
 - Technologische Trends

- Ausgangssituation darstellen

Diese Teilschritte werden in den folgenden Abschnitten einzeln behandelt.
3.2.1 Informationen beschaffen

Als Datengrundlage dienen unter anderem Institutsordner (Projekte, Fotos), Projektunterlagen (inkl. Fotos) von IICM Mitarbeitern sowie mündliche Überlieferungen. Weitere Quellen sind unter anderem:

- Jahresberichte, 10-Jahresbericht
- Foto-Ordner
- Projekt-Ordner
- Forschungsberichte
- Dia-Sammlung
- Dissertationen und Diplomarbeiten
- OCG-Berichte (Vorträge, Vortragende)
- Studienführer (Lehrveranstaltungen)
- Demos von Projekten
- Bücher von Institutsmitgliedern
- Das WWW
- Stellen der TU Graz (z. B. Dekanat und FTI)

Für die Informationsbeschaffung von Personen wurde ein Vorgehensplan ausgearbeitet, der folgendes beinhaltet:

- Anfragen an eine bestimmte Stelle wurden nur von einem Teammitglied gestellt.
- Es wurden Fragen an Datenlieferanten über einen bestimmten Zeitraum gesammelt und zu einem vereinbarten Zeitpunkt gesammelt gestellt.

Diese Vorgehensweise bietet mehrere Vorteile:

- Es wird unter den Teammitgliedern eine Zuständigkeit und damit eine Verantwortung für einen Teilbereich dieses Projekts aufgebaut. Die Teammitglieder können sich viel besser mit ihrer Aufgabe identifizieren.

- Informationslieferanten werden bei ihren anderen Tätigkeiten nur geringfügig gestört.

3.2.1.1 Der Hyperwave Information Server

MUCH wird (nach Fertigstellung) auf einem Hyperwave Information Server der neuesten Generation präsentiert werden. In diesem Abschnitts werden daher einige besondere Eigenschaften des Hyperwave Information Servers kurz vorgestellt.
Hyperwave geht auf Hyper-G, eine Entwicklung die im Jahr 1989 begann zurück. Dieses System wurde unter der Leitung von Hermann Maurer und Frank Kappe am IICM konzipiert:

- 1996 wurde die Firma Hyperwave gegründet.

Der Hyperwave Information Server ist der Durchbruch im Bereich Intranet-Informationssysteme. Er verbindet ausgefeiltes Dokumenten- und Inhaltsmanagement mit standardbasierter Web-Technologie. Im Folgenden sind einige Vorteile des Hyperwave Servers gegenüber Webservern der ersten Generation kurz erwähnt (siehe [Kappe99]):

- Linkkonsistenz

- Strukturierungsmöglichkeit und Konsistenz der Daten

Es existieren mehrere vordefinierte Containerklassen:

- Sequence: Die Objekte einer Sequence werden automatisch sequentiell verlinkt. Wird ein Element aus der Sequence entfernt werden auch alle darauf verweisenden Links entfernt. In Abbildung 1 wird ein neues Dokument zwischen den Dokumenten 4 und 5 eingefügt. Die Erstellung der notwendigen Hyperlinks und der Navigationselemente in
diesem Dokument, sowie Anpassungen an den bestehenden Dokumenten werden vom HIS vorgenommen.

Abbildung 1: Struktur einer Sequence

Die Sequence ist in vielen Fällen die optimale Struktur für eine Kurzpräsentation.

- **MultiCluster**: Während Collections die enthaltenen Elemente in Form einer Liste anzeigen, setzen MultiCluster diese zu einem einzigen Dokument zusammen. Das geschieht dynamisch, sobald ein Benutzer den MultiCluster aufruft. Dadurch können alle Änderungen in der Sortierreihenfolge, den Benutzerrechten und dem Verfallsdatum berücksichtigt werden.

Mit Hilfe eines MultiClusters, der Vergabe eines Verfallsdatums, und einer Sortierung nach diesem Verfallsdatum kann eine stets aktuelle Liste neuer Präsentationen angezeigt werden.

- **AlternativeCluster**: Der AlternativeCluster ist ähnlich dem MultiCluster, liefert jedoch, an Stelle einer Kombination aller Elemente, nur ein einziges, bestimmtes Element zurück. Diese Auswahl kann zum Beispiel mittels eines der folgenden Dokumentattribute erfolgen:

 - Das Sprachattribut eines Elements ermöglicht die einfache Realisierung von Mehrsprachigkeit.
 - Der MIME Type ermöglicht die Anzeige eines Dokuments in einem Format, das der Benutzer gewählt hat.
 - Die Qualität ermöglicht es dem Benutzer, abhängig von der zur Verfügung stehenden Bandbreite, Informationen mit unterschiedlichen Qualitätsstufen abzurufen.

Dies wird durch geeignete Metainformationen für die Dokumente ermöglicht.
Trennung von Präsentation und Inhalt

Benutzerrechte am Hyperwave Information Server

Suchen am Hyperwave Information Server
Eine wichtige Unterstützung für die schnelle Informationsauffindung ist neben Layout und Strukturierung eine ausgereifte Suchtechnologie. Der HIS verfügt über eine eigene Suchmaschine, welche die Suche in Dokumenten und den zugehörigen Metainformationen wie z. B. dem Namen des Autors ermöglicht.

Abbildung 2: Suchfilter des HIS

3.2.1.2 Designüberlegungen

Die Datenübertragungsgeschwindigkeit hängt von der zur Verfügung stehenden Bandbreite und der zu übertragenden Datenmenge ab. Die dem Besucher einer Webseite maximal zumutbare Zeit bis zur vollständigen Übertragung beträgt 10 Sekunden.

<table>
<thead>
<tr>
<th>Modem</th>
<th>Übertragungsrate</th>
<th>Antwortzeit 1 Sekunde</th>
<th>Antwortzeit 10 Sekunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISDN</td>
<td>28.8 kbit</td>
<td>2 kb</td>
<td>34 kb</td>
</tr>
<tr>
<td>T-1</td>
<td>56 kbit</td>
<td>4 kb</td>
<td>67 kb</td>
</tr>
<tr>
<td>T-1</td>
<td>2 Mbit</td>
<td>125 kb</td>
<td>2.4 MB</td>
</tr>
</tbody>
</table>

Tabelle 2: Maximale Seitengrößen für Antwortzeiten von 1 bis 10 Sekunden

Tabelle 2 gibt einen Überblick darüber welche Datenmengen in 1 bis 10 Sekunden übertragen werden können, wenn von einer Bearbeitungszeit von 0,5 Sekunden ausgegangen wird. Durch die Mehrfachverwendung gleicher Grafiken für die Navigation, die am Computer des Besuchers nach dem ersten Aufruf zwischengespeichert werden, kann die real übertragene Datenmenge reduziert werden. [Andrews00]
Ein weiteres Kriterium ist die Benutzerfreundlichkeit. In der DIN 66234, Teil 8 sind die folgenden Qualitäten eines ergonomischen Dialogsystems definiert:

1. Aufgabenangemessenheit
 Die Benutzer werden in der Erledigung ihrer Arbeitsaufgabe effizient unterstützt. Sie erreichen ihre Ziele schnell, ohne durch die Eigenschaften des Dialogsystems unnötig belastet zu werden.

2. Selbstbeschreibungsfähigkeit
 Jeder Dialogschritt ist unmittelbar verständlich. Die Benutzer können sich eine für das Verständnis und für die Erledigung der Arbeitsaufgabe zweckmäßige Vorstellung von den Systemzusammenhängen machen.

3. Erwartungskonformität
 Der Dialog entspricht den Erwartungen, die Benutzer aus Erfahrungen mit bisherigen Arbeitsabläufen oder aus der Benutzerschulung mitbringen.

4. Konsistenz
 Das Dialogverhalten ist einheitlich. Uneinheitliches Dialogverhalten zwingt den Benutzer zu starker Anpassung an wechselhafte Durchführungsbedingungen ihrer Arbeit, erschwert das Lernen und bringt unnötige Belastung mit sich.

5. Fehlerrobustheit
 Trotz fehlerhafter Eingaben kann das Arbeitsergebnis ohne oder mit minimalem Korrekturaufwand erreicht werden. Eingaben der Benutzer dürfen nicht zu undefinierten Systemzuständen oder Systemzusammenbrüchen führen.

Bei der Umsetzung von Internetpräsentationen kommen zur Unterstützung der in DIN 66234 geforderten Qualitäten eines ergonomischen Dialogsystems unter anderem die folgenden Gestaltungsmittel zum Einsatz (siehe [Andrews00], [Lampe99]):

- Die Suche soll von jeder Stelle möglich sein.
- Kurze aussagekräftige URLs ermöglichen das Zurechtfinden. Durch weglassen von Teilen der URL sollen übergeordnete Strukturen adressierbar sein.
- Da viele Besucher von Suchmaschinen oder anderen Webseiten zu einer Seite kommen muss für sie jederzeit ersichtlich sein wo sie sich aufhalten. Ein Logo oder Banner sollte zu diesem Zweck auf jeder Seite sein.
- Verwendete Icons sollen für die Zielgruppe verständlich sein.
- Eine übersichtliche Navigationsleiste erleichtert die Navigation.
- Der Inhalt von Webseiten sollte vollständig auf einer Bildschirmseite dargestellt werden können.
- Die Möglichkeit zur Sprachauswahl soll auf jeder Seite möglich sein.
- Bilder sollten unter Verwendung des Alt Attributs beschrieben werden.
- Einheitliche Farben, Logos und Fonts dienen der Konsistenzunterstützung.
3.2.1.3 Das Recht im Internet

Ein wichtiger Teil der Informationsbeschaffung ist das Suchen nach relevanten juristischen Quellen und die Interpretation der gefundenen Rechtstexte.

Das Internet ist keine rechtsfreie Enklave. Die Betätigung in diesem globalen Netzwerk unterliegt bestehenden rechtlichen Regelungen des Zivilrechts, Gewerberechts und Strafrechts (siehe [Kucsko00]). Im Folgenden werden einige Fragen die in diesem Zusammenhang beantwortet werden konnten kurz behandelt.

Welche Rechtsordnung ist anwendbar?
Die globale Nutzung des Internets konfrontiert uns nicht nur mit dem eigenen Heimatrecht sondern auch mit der Rechtsordnungen (aller) anderen Länder, in denen das Internet zugänglich ist. [netlaw]
Die zur Regelung eines globalen Netzwerks erforderliche "globale Rechtsordnung fehlt". Es kann durchaus sein, dass der Inhalt einer Website zwar nach österreichischem Recht nicht zu beanstanden ist, aber gegen die (strengeren) Regelungen der Rechtsordnung eines anderen Landes verstößt. Besondere Bedeutung erhält dieser Umstand, wenn ein Unternehmen international tätig ist. Die Durchsetzung von Gesetzen kann in diesem Fall bei der lokalen Niederlassung erfolgen.

Gilt das Urheberrecht (UrhG) für den Inhalt von Websites?
Das Internet ist wie eine riesige globale Bibliothek, voll Informationen, voll von geistigem Eigentum. Websites enthalten in großem Umfang urheberrechtlich geschütztes Material. Urheberrechtlich geschützt sind Werke im Sinne dieses Gesetzes, das sind eigentümliche geistige Schöpfungen auf den Gebieten der Literatur\(^6\), der Tonkunst, der bildenden Künste und der Filmkunst. \([\S 1 \text{UrhG}]\)
Ob dieses Kriterium erfüllt ist, kann jeweils nur für den konkreten Inhalt beurteilt werden. Die Rechtsprechung wurde jüngerer Zeit restriktiver und schützt auch einfache Gestaltungen wie Logos oder Strichzeichnungen. Auf den Zweck des Werks kommt es nicht an. [Kucsko00]

Wer hat die Rechte? \([\text{RIS}\]^7\]
Das ist eine Frage die sehr schwierig zu beantworten ist. Normalerweise liegen die Rechte beim Urheber \([\S 10 \text{UrhG}]\) (Fotografen, Grafiker, Maler, Verfasser) sie können jedoch an einen Verlag, eine Agentur oder eine Verwertungsgesellschaft abgetreten werden. \([\S 14 \text{UrhG}]\) Oft wurden nur bestimmte Rechte abgetreten, wie Buchrechte, Filmrechte oder Internetrechte.

Die Nutzung urheberrechtlich geschützten Materials auf einer öffentlich zugänglichen Website ist ein urheberrechtlich relevanter Vorgang, der den Regelungen des jeweiligen nationalen Urheberrechts unterliegt.

\(^6\) Software ist ein Werk der Literatur \([\S 2 \text{UrhG}]\)
\(^7\) Die Informationen am Rechtsinformationssystem sind nicht urheberrechtlich geschützt. Die reine Darstellung von Gesetzestexten kann nicht geschützt werden.
Hier ein konkretes Beispiel:

Was ist mit dem Recht auf das eigene Bild?
Die Veröffentlichung des eigenen Bildes kann nicht untersagt werden, wenn darauf nicht etwas furchtbar Peinliches, Anstößiges oder Verbotenes zu sehen ist. Personen des öffentlichen Lebens müssen sogar das akzeptieren.

Welche Konsequenzen hat ein Verstoß gegen das Urheberrecht?
Geldstrafen bis zu 360 Tagsätzen und Freiheitsstrafen bis zu 6 Monaten werden in § 91 UrhG angedroht. Nach § 86 UrhG besteht für den Urheber das Recht auf angemessenes Entgelt.

3.2.1.4 MUCH und das Urheberrecht

** Können Screenshots und Inhalte fremder Webseiten in MUCH verwendet werden?**
§ 46 UrhG gibt darüber Auskunft:
Zulässig sind die Vervielfältigung und die Verbreitung sowie der öffentliche Vortrag und die Rundfunksendung:
1. wenn einzelne Stellen eines veröffentlichten Sprachwerkes angeführt werden;
2. wenn einzelne Sprachwerke oder Werke der im § 2, Z. 3 bezeichneten Art nach ihrem Erscheinen in einem durch den Zweck gerechtfertigten Umfang in ein die Hauptsache bildendes wissenschaftliches Werk aufgenommen werden; ein Werk der im § 2, Z. 3, bezeichneten Art darf nur zur Erläuterung des Inhaltes aufgenommen werden.

MUCH ist die wissenschaftliche Aufarbeitung der Geschichte des IICM. Das Museum ist in diesem Sinne als wissenschaftliches Werk, wie zum Beispiel ein Geschichtsbuch zu betrachten.

8 Diese Formulierung definiert das Zitat.
9 § 2, Z. 1 Sprachwerke aller Art einschließlich Computerprogrammen
10 § 2, Z. 3 Werke wissenschaftlicher oder belehrender Art, die in bildlichen Darstellungen in der Fläche oder im Raume bestehen, sofern sie nicht zu den Werken der bildenden Künste zählen.
3.2.1.5 Gefahrenpotenziale bei Webservern

Nach Fertigstellung von MUCH wird der Webserver für jeden Internetnutzer zu finden sein. Viele werden sich für den Inhalt interessieren, aber andere werden in dem neuen Server ein Objekt sehen, an dem sie ihre Einbruchsfähigkeiten erproben und verbessern können. Folgende ausgewählte Angriffsarten richten sich speziell gegen Webserver (siehe [Anonymus99]):

Denial of Service (DoS)

Distributed Denial of Service (DDoS)
Im Februar 2000 legten DDoS Attacken verschiedene große Internet-Dienste (wie z.B. Yahoo, CNN, Amazon und eBay) lahm. Dabei verschafften sich die Angreifer

Penetration Break-in

Content Manipulation

DNS-Spoofing

Zur Abwehr von Angriffen aus dem Internet stehen unter anderem die folgenden Maßnahmen zur Verfügung:

Sichere Identifikation
Die einfachste Methode, um einen Server gegen eine Vielzahl vor Angriffen zu schützen, ist die Vergabe eines sicheren Passworts. Die Länge eines sicheren Passworts soll mindestens 8 Zeichen betragen, sowie eine Kombination von Buchstaben und Zahlen beinhalten. Andere Methoden sind z.B.:

- Biometrische Verfahren zur Identifizierung wie z.B. Fingerabdruck- oder Retinascan, Stimm- und Gesichtserkennung.
- Identitätsnachweis unter Einsatz von Chiptechnologie wie z.B. Chipkarten oder USB Schlüsselanhänger.
Erkennung des Benutzers am individuellen Merkmalen wie z.B. an Schreibmustern.

Vergabe von Benutzerrechten

Der Hyperwave Information Server unterstützt sowohl die Vergabe von Einzel- als auch Gruppenrechten. Für den Fall, dass Authentifizierungsunterlagen in die falschen Hände gelangen, kann durch eine restriktive Rechtevergabe verhindert werden, dass Schäden in großem Ausmaß verursacht werden können.

Server-Zertifikate

Benutzerzertifikate

Typische Passwort-Mechanismen können durch das Akzeptieren von Anwenderzertifikaten und die damit verbundenen Identifizierung ergänzt werden:

1. Ruft ein Anwender eine (Web)Seite, die Digitale Zertifikate akzeptiert, auf, verlangt der Server automatisch das Zertifikat vom Browser des Anwenders.

2. Der Anwender, der durchaus über mehrere Zertifikate verfügen kann, gibt sein Zertifikat zur Identifizierung frei.

Zertifikate eignen sich für universelles Web-Site-Login.

Nur ein Server pro Maschine

3.2.2 Kosten festlegen

Dieser Teilschritt des Wertanalyse Arbeitsplanes dient dazu die durch ein Projekt entstehenden Kosten zu planen. Bei Wertverbesserungen ist es eine leichte Aufgabe, da in diesem Fall bereits Kosteninformationen zur Verfügung stehen. Von diesen Kosten
ausgehend wird meist eine Kostenreduktion von 15 – 25 % angestrebt11. Bei der Wertgestaltung können die Kosten nur allgemein geplant werden. Ein Beispiel dafür ist die folgende Kostenaufteilung: 30 % der geplanten Gesamtkosten fallen auf die Hardware, 70 % auf die Software.

Die Entwicklung der Access Datenbank für MUCH erforderte viel Aufwand. In dieser Zeit hätten Informationen zwar direkt in einem Dateisystem erfasst werden können, die Verwendung einer Datenbank bietet jedoch unter anderem folgende Vorteile gegenüber einem Dateisystem:

- Vermeidung von Redundanz und Inkonstanz
 Daten werden in einer Datenbank nur einmal gespeichert. Datenänderungen führen nicht zu Inkonsistenzen.

- Bessere Zugriffsmöglichkeiten
 In einem einheitlichen Datenmodell ist die Verknüpfung von Daten mit hoher Flexibilität möglich. Isolierte Daten können nur schwer oder gar nicht miteinander verknüpft werden.

- Mehrbenutzerbetrieb

- Vermeidung von Sicherheitsproblemen

11Die durchschnittliche Kostensenkung durch den Einsatz von Wertanalyse beträgt 22 %. [Schaller95]
• Geringe Entwicklungskosten

Der im Vergleich zu einem Dateisystem höhere Aufwand für die Entwicklung der Datenbank wurde im Laufe der Arbeiten an MUCH durch die Vermeidung von Redundanzen und Fehlern während der Datenerfassung schnell kompensiert. Änderungen an der Struktur oder dem Inhalt der Präsentation können durch Anpassung von Scripts innerhalb kürzester Zeit vorgenommen werden.

3.2.3 Funktionen feststellen

Das Feststellen der Funktionen, die erfüllt werden sollen, ist einer der elementaren Schritte im Wertanalyse Arbeitsplan. Das Denken in Funktionen beseitigt Denkblockaden und öffnet den Geist für neue Lösungsmöglichkeiten. [Lercher98]

Die Funktionen von MUCH:

• Ein Museum im Web zu errichten
• Potenzielle Auftraggeber zu informieren
• Benutzer des Internets mit interessantem Inhalt zu versorgen
• Studenten im Rahmen dieses Projektes auszubilden
• Studenten Informationen zu bieten
• Kontakt zu Angehörigen und Freunden des Instituts zu halten

In der Wertanalyse werden die Funktionen durch ein Hauptwort und ein Zeitwort in Nennform gebildet:

• IICM präsentieren
• Webmuseum errichten
• Besucher informieren
• Content bieten
• Studenten ausbilden
• Kontakte halten

3.2.4 Entwicklungen einschätzen

Obwohl Museen vergangenes präsentieren muss der Zugriff auf die Präsentationen und Informationen auch in Zukunft gewährleistet sein. Um zukünftige Entwicklungen einschätzen zu können werden daher im Folgenden soziale, wirtschaftliche und technische Aspekte berücksichtigt.

3.2.4.1 Soziale Entwicklungen

Das Internet

Abbildung 5: Akzeptanz von Medien in Jahren

Wie man an dem Vergleich in Abbildung 5 ersieht dauerte es beim PC 16 Jahre, um 50 Millionen Benutzer zu erreichen, beim Internet nur 4 Jahre.

Dafür gibt es drei Gründe:

1. Die hohe Anzahl an PCs
2. Die geringen Kosten des Internetzuganges.
3. Die leichte Beherrschbarkeit des Mediums.

Statistische Angaben zur Internetnutzung in Österreich: [Integral00]

- Knapp ein Viertel der österreichischen Haushalte besitzt einen PC.
- 2,2 Millionen Österreicher haben grundsätzlich Zugang zum Internet.
- Jeder vierte Österreicher nutzt das Web zumindest gelegentlich.
- 590.000 Österreicher sind täglich im Netz.

12 Viele PCs werden für das Internet vorkonfiguriert ausgeliefert.

Abbildung 6: Grundsätzlicher Internetzugang in Österreich 2000

Wie aus Abbildung 6 ersichtlich haben 39 % der Österreicher Zugang zum Internet. Bis auf jene der 22 %, die das Internet von zu Hause aus, mittels einer Wählverbindung, nutzen haben alle eine schnelle Zugangsmöglichkeit.
Die mobilen Revolution

Aus einer Studie die Ende Juli 2000 vom Marktforschungsinstitut AC Nielsen durchgeführt wurde geht hervor, dass bereits 57 % der Österreicher ein Mobiltelefon besitzen. In der Bevölkerungsschicht der bis 30-jährigen liegt die Rate der Mobiltelefonbesitzer bei 69 %. Nach einer Meldung der österreichischen Wirtschaftskammer stieg die Anzahl der Mobiltelefonanmeldungen zwischen 1998 und 1999 in Österreich um 98 %. Nach Griechenland (110 %), Luxemburg (108 %) und den Niederlanden (105 %) liegt der Anstieg Österreichs in der EU damit an vierter Stelle.[wko]

Abbildung 7: Wachstum im Sektor mobile Kommunikation [Likkanen]

In der EU ist der Mobilkommunikationssektor ein rasch wachsender Sektor (siehe Abbildung 7). Verbesserte Technologie könnte noch mehr Bürger im Arbeitsleben und im Freizeitbereich mit neuen Formen der Mobilkommunikation und den damit verknüpften Diensten in Verbindung bringen. Sowohl positive als auch negative Wirkungen sind die Folge.

Eine Expertenbefragung zu diesem Thema zeigte folgende Ergebnisse (siehe [IWE99]):

Positive Auswirkungen:

Ein nicht unbeträchtlicher Teil der Bevölkerung wird durch den Einsatz mobiler Kommunikation über erhöhte Zeitsouveränität verfügen.

Weitere Vorteile sind:

- Mobilitätsgewinn,
- Erreichbarkeit in Krisenfällen
- Effizienz-, bzw. Produktivitätssteigerungen.
Negative Auswirkungen:

Stress oder erhöhte Arbeitsbelastung können eine Folge der ständigen Erreichbarkeit sein. Die Schätzung der Beeinträchtigung des Privat- und Familienlebens liegt in der gleichen Größenordnung, wie die, für die bessere Organisierbarkeit desselben. Probleme mit Telearbeit (inkl. Arbeitsrecht und -beziehungen, Mehrfachbelastung) werden von 38,8 % der Respondenten für 1-5 % der Bevölkerung erwartet und von 29,4 % für einen Anteil von 5-30 %.

Durch das Telefonieren während des Autofahrens besteht eine erhöhte Unfallgefahr, selbst wenn eine Freisprechanlage benutzt wird. Im Freizeitbereich, vor allem an öffentlichen Orten, erwartet die Mehrheit der Befragten Einschränkungen.

Bei einem Großteil der Mobilkommunikations-Nutzer überwiegen, nach Angaben dieser Studie, die positiven Effekte, dennoch treten bei einem nicht zu vernachlässigenden Teil ernstzunehmende Probleme auf.

3.2.4.2 Wirtschaftliche Entwicklungen

Die Kosten für leitungsgebundener Zugänge zum Internet werden mit der Deregulierung im Telekommunikationsbereich und dem damit verbundenen, steigenden Konkurrenzdruck sinken. [Likkanen]

Eine Expertenbefragung brachte folgende Ergebnisse (siehe [IWE99]):

- Es gibt eine hohe Übereinstimmung, dass sich die Kosten der Datendienste in Zukunft nach der übertragenen Datenmenge richten werden.

- Datendienste werden preislich nicht unspezifisch angeboten, sondern es werden verschiedene Serviceklassen eingeführt werden, die auf die unterschiedlichen Anforderungen der verschiedenen Dienste und Nachfrager abgestimmt sind. Eine garantierte Bandbreite zu Spitzenzeiten wird ihrer Meinung nach preisbestimmend sein.

- Dienste, die nur geringe Bandbreiten benötigen, können auch zu flat-rates angeboten werden.

- Rund drei Viertel der Experten erwarten, dass UMTS zu einer stärkeren geschäftlichen Nutzung multimedia ler Kommunikationsformen beitragen wird. [IWE99]

13 Flat-rates sind volumen- und zeitanabhängige fixe Gebühren. Im Bereich der Breitbandzugänge ADSL und Kabelnetz sind sie die übliche Verrechnungsmethode.
3.2.4.3 Politische Entwicklungen

Dieser Abschnitt beschäftigt sich mit den politischen Entwicklungen vor allem im Zusammenhang mit dem Signaturgesetz und Email-Werbung.

Das Signaturgesetz (SignaturG)

Email-Werbung

§ 101 TKG untersagt auch Emails "zu Werbezwecken". Bei solchen Werbemails kommt es nicht darauf an, ob sie als Massensendung versandt werden. Auch ein einziges Werbe-Email, das ohne vorherige Zustimmung des Empfängers versandt wurde, wäre demnach bereits unzulässig. Verstöße gegen § 101 TKG sind mit Verwaltungsstrafe bis ATS 500.000,- sanktioniert. Derartige Verstöße können zusätzlich als sittenwidriger Wettbewerb nach § 1 UWG verfolgt werden. Eine Klagemöglichkeit haben in diesem Fall nicht die Empfänger der Emails, sondern nur gesetzliche Interessensvertretungen wie z.B. die Kammern und Konkurrenten.

Wer Massen-Emails oder Werbe-Emails ohne nachweisbare vorherige Zustimmung des Empfängers versendet, setzt sich nicht unbeträchtlichen rechtlichen Risken aus. Dies kann sich in naher Zukunft ändern, wie der folgende Bericht zeigt.

SPAM ab 2000 erlaubt!??
Die Versender sollen die Werbesendung kennzeichnen. In der Betreffzeile müsse das Wort "Werbung" oder zumindest ein Hinweis dieser Art zu finden sein. Der Umfang der E-Mail soll auf 5 KB begrenzt sein.

[DMMV]
Entwicklungen

Das Signaturgesetz und Kryptografie machen die eingeschriebene Email möglich. Der Ablauf einer solchen Transaktion ist in Abbildung 8 ersichtlich. [Infonova00]

Die Eigenschaften der eingeschriebenen Email:
- Vertraulichkeit: Der Datentransport erfolgt verschlüsselt.
- Authentizität: Die Integrität von Daten sowie deren Herkunft ist jederzeit überprüfbar.
- Nachvollziehbarkeit: Alle Vorgänge des Datenmanagements sind nachvollziehbar.

![Abbildung 8: Eingeschriebene Email](image)

Zusammenfassung

Zeitstempel ermöglichen den Nachweis von Erstellungs-, Signierungs-, und Versandzeitpunkt.

\(^{14}\) z.B. Schriftfarbe und Hintergrundfarbe sind identisch
Webseiten auf Servern können signiert werden, um zu beweisen, dass eine Webseite von einem bestimmten Server kommt und sie nicht verändert wurde. Dadurch kann ein Qualitätszertifikat ausgestellt werden.

Die digitale Demokratie wird möglich. Das Recht geht vom Volk aus\(^{15}\).

3.2.4.4 Technische Entwicklungen

In diesem Abschnitt werden technische Entwicklungen der Bereiche "Stationäre Internet-Zugangstechnologien", "Mobile Internet-Zugangstechnologien" sowie "Internet Zugangsgeräte" vorgestellt.

![Internet Connectivity Outlook](image)

Abbildung 9: Mobile Endgeräte im Internet

Dieser Zugang kann mittels Laptop und Modem, mittels eines Handheds oder unter Verwendung eines anderen Kommunikationsgerätes, wie zum Beispiel eines UMTS Mobiltelefons, erfolgen.

Das Internet ist, durch die implizierte Mobilität, genau dort verfügbar wo, es benötigt wird. Mit der GSM Technologie stellen geringe Übertragungsgeschwindigkeiten von 9600 – 14400 Kbit und kleine Displays die Hemmfaktoren für den mobilen Internetzugang dar.

Stationäre Internet Zugangstechnologien

- **Public Switched Telephone Network (PSTN) [ITU]**

- **Integrated Services Digital Network (ISDN)**
 ISDN ist ein einheitliches Netzwerk zur Abwicklung verschiedener Telekommunikationsdienste, und zur Übertragung verschiedenartigster Daten, über ein und dieselbe "Leitung". Die zu übertragenden Daten unterschiedlichst Formate werden in digitale Datenpakete gewandelt, wodurch es möglich ist, Sprach-, Text-, Bild- und Datenübertragungen in einem Netz zu verwirklichen.
 Die normale Übertragungsgeschwindigkeit von 64 kbit/s kann durch Kanalbündelung erhöht werden, so dass eine Übertragungsrate von 128 kbit/s erreicht wird. Der Verbindungsaufbau erfolgt innerhalb weniger Sekunden.

- **xDSL**

 Weitere DSL Varianten:

 High Date Rate Digital Subscriber Line (HDSL)
 HDSL ermöglicht in beide Richtungen eine Übertragungsgeschwindigkeit von bis zu 2 MBit/s.
Single Line Digital Subscriber Line (SDSL)

Very High Date Rate Digital Subscriber Line (VDSL)
VDSL ermöglicht Übertragungsrate von mehr als 50 MBit/s. Voraussetzung ist bei Verwendung von Kupferkabeln eine sehr kurze Verbindung zwischen Netzknoten und Endgerät oder eine Glasfaserverbindung (siehe auch Tabelle 3).

<table>
<thead>
<tr>
<th>Name</th>
<th>Max. Datenrate (Download)</th>
<th>Max. Entfernung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL</td>
<td>1.5 - 9 Mbit/s</td>
<td>bis 5.5 km</td>
</tr>
<tr>
<td>HDSL</td>
<td>1.5 - 2 Mbit/s</td>
<td>bis 4 km</td>
</tr>
<tr>
<td>SDSL</td>
<td>768 Kbit/s</td>
<td>bis 3.5 km</td>
</tr>
<tr>
<td>VDSL (Glasfaser)</td>
<td>13 - 52 Mbit/s</td>
<td>bis 14 km</td>
</tr>
<tr>
<td>ISDN</td>
<td>128 Kbit/s</td>
<td>bis 5.5 km</td>
</tr>
</tbody>
</table>

Tabelle 3: xDSL im Überblick

- **TV-Kabelanschluss**

- **Satellitenverbindung mit leitungsgebundenem Rückkanal**
• Internetzugang mit Satelliten Rückkanal

Abbildung 10: Internetzugang über Satellit mit Rückkanal

Wegen der langen Signallaufzeiten sind Satellitenverbindungen für Videoconferencing und "Voice over IP" nur bedingt einsetzbar.

• Richtfunk
Die aktuellen Übertragungsraten bei Richtfunkstrecken betragen 2 – 155 Mbit/s. Die Verwendung dieser Technologie ist extrem kostenintensiv und daher für die Massenanwendung nicht geeignet.

• Power-Line-Carrier (PLC)
PLC Systeme ermöglichen die Datenübertragung über Energieleitungen. Der Vorteil dieser Technologie besteht darin, dass an jeder Steckdose eine Verbindung zum Internet hergestellt werden kann. Auf den Aufbau eines eigenen Netzwerkes kann verzichtet werden. Die Datenübertragungsrate beträgt bis zu 2 Mbit/s. Die Nachteile sind die fehlenden Zulassungen der Behörden hinsichtlich der Frequenzbereiche und die geringe Reichweite die, infolge der Abstrahlverluste auf den nicht geschirmten Stromleitungen nur wenige 100 Meter beträgt. [Pailer00]
Modem	ISDN	Kabel	ADSL	Satellit

Tabelle 4: Gegenüberstellung verwendeter stationärer Internet-Zugangstechnologien

Tabelle 4 zeigt einen Überblick über eine Vielzahl der im Jahr 2000 verwendeten stationären Internetzugangstechnologien.

Mobile Internet-Zugangstechnologien

- **Global System for Mobile Communications (GSM)**
 GSM ist ein internationaler Standard für den digitalen Mobilfunk. Die Datenübertragungsrate beträgt 9600 bis 14400 Bit/s.

- **Enhanced Data GSM Environment (EDGE)**

- **General Packet Radio (GPRS)**
bereits mit der nachfolgenden Gerätegeneration Übertragungsgeschwindigkeiten zwischen 40 und 50 Kbit/s erreicht werden können.

- Universal Mobile Telecommunications Systems (UMTS)
 Das UMTS-Funknetz wird per Spezifikation in hierarchische Versorgungsebenen unterteilt, die unterschiedliche Transferschwindigkeiten zulassen:
 - In der sogenannten Makroebene sind es mindestens 144 Kbit/s bei einer maximalen Reisegeschwindigkeit der Empfangsanlage von 500 km/h.
 - In der Mikroebene werden 384 Kbit/s bei einer Reisegeschwindigkeit von maximal 120 km/h garantiert.
 - In der Pikozone sind es 2 Mbit/s bei maximal 10 km/h Reisegeschwindigkeit, das entspricht dem sogenannten "quasistationären Betrieb". UMTS ist damit bis zu 30 Mal schneller als ISDN (64 kbit pro Sekunde) und bis zu 200 Mal schneller als heutige GSM-Handys (9,6 kbit pro Sekunde).

Mit mobilen Endgeräten der dritten Generation (3G) werden Datenübertragungsraten bis zu 2 Mbit/s möglich sein. (Siehe Abbildung 11) [Enitel]

Abbildung 11: Übertragungsgeschwindigkeit und Zeitrahmen
Internet Zugangsgeräte

- **Stationärer Computer**

- **Laptop**

- **Set-Top-Box**

![Abbildung 12: Nokia Set-Top-Box mit Fernbedienung](image-url)
• WebPAD

Abbildung 13: Honeywell WebPAD

WebPADs sind mobile Endgeräte, die über eine Basisstation drahtlos mit dem Internet verbunden sind, wobei die Entfernung zur Basisstation bis zu 150 Meter betragen kann. Bis zu 8 WebPADs können an eine Basisstation angeschlossen werden und erreichen eine Übertragungsgeschwindigkeit von 1,5 Mbyte/s. Obwohl Navigation und Texteingabe über einen Touchscreen möglich sind, besitzen diese Geräte einen USB Port für den Anschluss von Tastatur und Maus. [WebPad]

• Screenphones

Abbildung 14: Screenphones

Ein Screenphone ist eine stationäre Kombination aus Telefon und WebPAD. Die Geräte besitzen einen Touchscreen mit einer Auflösung von 640 x 480 Bildpunkten, ein Nummernverzeichnis, das bis zu tausend Einträge aufnehmen kann, einen Webbrowser und einen Emailedienst, der mit jeder Art von Mailserver
zusammenarbeitet (SMTP, POP, IMAP4). Einige Typen besitzen einen Smart Card Reader nach ISO 7816 und eine serielle Schnittstelle.

- **Handheld**

Abbildung 15: Compaq iPaq Pocket PC H3630

Der Compaq iPAQ Pocket PC besitzt ein Farb-TFT-Display mit einer Diagonale von 9,6 cm, einer Auflösung von 240 x 320 Punkten und kann bis zu 4096 Farben darstellen. Der Visor von Handspring hat ein Graustufen LCD Display mit einer Auflösung von 160 x 160 Bildpunkten. Eine Version mit Farbdisplay ist in Planung. [Handhelds]

Im Gegensatz zu Computerbildschirmen die Informationen im Querformat anzeigen wird bei diesen Geräten meist das Hochformat verwendet. Die Anbindung an das Internet kann auf alle bekannten Arten erfolgen.

- **UTMS Endgeräte**

Abbildung 16: Designstudien von UMTS Endgeräten

Die Designstudien zeigen eine Vielzahl von Möglichkeiten auf: Neben Videokonferencing und surfen im Internet soll auch weiterhin das telefonieren möglich sein. [Nokia]
Im Gegensatz zur Vergangenheit nehmen Auflösung und Bildschirmdiagonale nun nicht mehr mit jeder neuen Displaygeneration zu. Es werden Geräte mit einer maximalen Auflösung von 640 x 480 Punkten oder kleiner hergestellt. Eine Abhilfe können Displays auf Basis organischer Leuchtdioden schaffen die sich rollen und falten lassen. [Phoenix00]

Auswirkungen schnellerer Verbindungen zum Internet [Intern1002]

Eine im Auftrag des US-Verbandes der Rundfunkanbieter (National Association of Broadcasters, NAB) durchgeführte Studie zeigt, dass die Bandbreite der Internetzugänge auch über die Zeit bestimmt, die online verbracht wird.

Die Marktforscher der Firmen Arbitron und Coleman haben dabei untersucht, wie viel der für die Mediennutzung aufgewendeten Zeit bei Privatpersonen auf welches Medium entfällt. Der Durchschnittsamerikaner verbringt demnach 33 % seines "Medientages" mit Fernsehen. Weitere 28 % entfallen auf das Radio und immerhin 11 % der gesamten Zeit verbringt er mit dem Internet. Anders dagegen verhält es sich in Haushalten mit breitbandigem Internetzugang. Dort steigt die mit dem Internet verbrachte Zeit auf 21 %, während die Anteile für Fernsehen und Radio auf 24 % respektive 21 % fallen.

3.2.5 Ausgangssituation darstellen

Das Internet und Gegenstände des täglichen Lebens, wie Telefone, Fernseher und Computerspiele, wachsen zusammen. Leute, die nie einen Computer gekauft hätten, kommen über eine Set-Top-Box oder ein Screenphone mit diesem Medium in Berührung. Durch immer schneller werdende Verbindungen wird mehr Zeit im Internet verbracht.

Mobiltelefone der dritten Generation werden Geräte sein, über die Dienste angeboten werden, die man sich heute noch nicht vorstellen kann. Gewaltige Mengen an Wissen werden jedermann, immer und überall zur Verfügung stehen. Für diese Geräte kann man mit bestem Gewissen den Ausdruck "Allgegenwärtiger Computer" verwenden. [Maurer00]

Implantate oder Messgeräte am menschlichen Körper können laufend Informationen zu medizinischen Einrichtungen weiterleiten. Bei kritischen Veränderungen können Warnungen an den Träger übermittelt, oder Notfallteams alarmiert werden.
Bereits jetzt existieren die folgenden Dienste, weitere sind in Vorbereitung:

Geldtransferdienst

![Abbildung 17: Bezahlen mit dem Mobiltelefon](image)

Mit Mobiltelefonen wird es möglich im WWW oder in Geschäften zu zahlen. Das Mobiltelefon in Abbildung 17 besitzt ein Smartcard-Lesegerät im Akkumulator. Chipkarten können für Transaktionen verwendet werden. Anonymes Zahlen im Internet wird in Österreich ab Ende 2000 mittels eines Rubbelkartensystems verfügbar sein (siehe [paysafecard]).

Lokalisierungsdienst

Mobiltelefone können Touristen wissenswertes über Sehenswürdigkeiten erzählen, da sie ihren eigenen Standort jederzeit kennen. Durch die, in Ballungszentren bis auf wenige 100 Meter genaue Lokalisierungsmöglichkeit der Mobiltelefone, bieten ortsbezogene Dienste ein großes Potenzial. Beispiele dafür sind interaktive Fremdenführer, Informationen über die nächstgelegenen Restaurants, Stadtpläne und vieles mehr.

Abbildung 18: Tele2Mobile Position

3.3 Zielsystem entwickeln

In diesem Schritt geht es um die Entwicklung von Zielen, welche die Grundlage für die nachfolgende Ideensuche und die Bewertung der Lösungsansätze darstellen.

3.3.1 Die Zielgruppe

Unter Spezialisten entstehen Ausdrücke, die nur für sie eine eindeutige Bedeutung haben. Dreibuchstabige Abkürzungen, die fast in jedem Bereich eine andere Bedeutung haben, sind ein weiteres Problem. Der Inhalt einer Webpräsentation soll deshalb auf den Besucher abgestimmt werden. Der folgende Satz soll das demonstrieren:

"Die Transaktion wird transparent durchgeführt."

In der Systemarchitektur bedeutet das, dass der Benutzer nicht erfährt auf welcher Maschine ein Befehl durchgeführt, oder auf welche Festplatte zugegriffen wurde. Bei einer Bank wird darunter die vollständige Protokollierung eines Vorgangs verstanden.

Die Präsentation in MUCH richten sich im Speziellen an folgende Benutzergruppen:

- Potenzielle Auftraggeber
- Angehörige (auch ehemalige) und Freunde des Instituts
- Studierende
- Informationssuchende

3.3.1.1 Potenzielle Auftraggeber

Um beurteilen zu können, ob ein Partner für die eigenen Projekte gefunden ist, soll die Möglichkeit bestehen, einen möglichst umfassenden Eindruck über erfolgreich durchgeführte Projekte zu erhalten.
Je nach Informationsbedarf des Besuchers stehen Präsentationen mit unterschiedlicher Detailgenauigkeit zur Verfügung (siehe [Sammer99]):

- Basisdaten des Projekts (obligatorisch): Projektdauer, Projektleitung
- Kurzpräsentation (obligatorisch): einige wenige HTML Seiten
- Long Version (obligatorisch): bei größeren Projekten, ähnlich der Kurzpräsentation nur wesentlich ausführlicher

3.3.1.2 Angehörige und Freunde des Instituts

3.3.1.3 Studierende

Diesem Segment sind vor allem Studierende der Studienrichtungen Telematik und Technische Mathematik, die eine Wahlfachgruppe für ihr Studium, ein Thema für ein Projekt oder eine Diplomarbeit suchen, zuzuordnen. Die Präsentation von Projekten, Diplomarbeitsthemen und Kurzfassungen geben einen Einblick über die Möglichkeiten die am IICM geboten werden.

3.3.1.4 Informationssuchende

3.4 Ideen entwickeln

In diesem Abschnitt wird das Phasenschema des kreativen Denkprozesses erklärt. Denkblockaden und Kreativitätstechniken die zu ihrer Überwindung eingesetzt werden können werden vorgestellt.

Abbildung 19: Mind Map

Das Phasenschema des kreativen Denkprozesses [Weisberg89]

Die Phasen sind nicht als Prozessablauf klar voneinander abgegrenzt und zeitlich geordnet zu betrachten. Sie werden während des kreativen Prozesses mehrfach und auch in umgekehrter Reihenfolge durchlaufen.

Abbildung 20: Phasenschema des kreativen Denkprozesses

- **Vorbereitung**
 Die Vorbereitungsphase ist die Phase der Problemerfassung, der Sammlung und Ordnung des Wissensmaterials und der inneren Sensibilisierung auf alles, was mit dem Problem zusammenhängt. In dieser Phase sind die Fähigkeit und die Bereitschaft wichtig, unvoreingenommen an eine Problemsituation heranzugehen, sie in ihre Komponenten zu zerlegen und zu strukturieren.

- **Inkubation**
 Nach der Phase der Vorbereitung wird das Problem häufig beiseite geschoben und nicht mehr bewusst durchdacht, aber unbewusst weiterbearbeitet. Die Inkubationstheorie wurde aufgestellt, weil eine Reihe kreativer Menschen von weitreichenden Gedankensprüngen während ihrer kreativen Arbeit berichtete, die unabhängig vom bewussten Denken zu sein schienen.

- **Inspiration**
 Verläuft die Phase der Inkubation erfolgreich, so hat die betreffende Person im nächsten Stadium unvermutet eine Erleuchtung, es fällt ihr die Lösung des Problems ein.

- **Gestaltung**
 Im Stadium der Inspiration zeigt sich meist nur ein Ansatz einer Lösung, der dann im Zuge der Gestaltungssphase endgültig ausgearbeitet wird. In dieser abschließenden Phase muss die subjektive Einsicht in eine objektive, kommunizierbare Form gebracht werden.
Kreativitätstechniken

Zur Ideenfindung stehen eine Vielzahl von Vorgehensweisen zur Verfügung. Diese lassen sich, wenn man sie nach gemeinsamen Durchführungsmerkmalen ordnet in sechs Gruppen teilen (siehe Tabelle 5). [Ofner00a]

<table>
<thead>
<tr>
<th>Methodengruppe</th>
<th>Verfahrensmerkmale</th>
<th>Wichtige Repräsentanten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methoden der systematischen Problemspezifizierung</td>
<td>Aufdecken der Kernfragen eines Problems oder Problembereiches durch systematisches und hierarchisch-strukturierendes Vorgehen</td>
<td>Progressive Abstraktion KJ-Methode Problemlösungsbau</td>
</tr>
<tr>
<td>Methoden der systematischen Strukturierung</td>
<td>Aufteilung des Problems in Teilkomplexe; Lösung der Teilprobleme und Zusammenfügen zu einer Gesamtlösung; Systematisierung von Lösungsmöglichkeiten</td>
<td>Morphologischer Kasten Funktionsanalyse Attribute Listing Mind Mapping</td>
</tr>
<tr>
<td>Brainwriting-Methoden</td>
<td>Spontanes Niederschreiben von Ideen auf Formulare oder Zettel; Umlauf von Formularen</td>
<td>Methode 635 Brainwriting Pool Ideen-Delphi</td>
</tr>
<tr>
<td>Methoden der schöpferischen Orientierung</td>
<td>Befolgung bestimmter Prinzipien bei der Lösungssuche</td>
<td>Bionik</td>
</tr>
<tr>
<td>Methoden der schöpferischen Konfrontation</td>
<td>Stimulierung der Lösungsfindung durch Auseinandersetzung (Konfrontation) mit Bedeutungsinhalten, die scheinbar nicht mit dem Problem zusammenhängen.</td>
<td>Synektik Semantische Intuition</td>
</tr>
</tbody>
</table>

Tabelle 5: Gruppierung der Methoden der Ideenfindung nach Verfahrensmerkmalen

16 Die Methoden der ersten Gruppe dienen nicht primär der Problemlösung, sondern der analytischen Durchdringung problematischer Sachverhalte.

17 Ideen-Delphi ist die einzige Methode, die eine anonyme Meinungsabgabe unterstützt.
Diese Methoden lassen sich vielfach kombinieren. Für die durch eine Funktionsanalyse ermittelten Funktionen können zum Beispiel durch Brainstorming oder Synektik Lösungen gefunden werden. Im Team wurde Brainstorming als Methode zur Ideenfindung für MUCH verwendet.

Denkblockaden

Im Zusammenhang mit dem Denkvorgang ergibt sich eine Reihe von Schwierigkeiten oder Blockaden, die auftauchen können, wenn man eine kreative Lösung für ein Problem finden will. Diese Denkblockaden reichen von elementaren Schwierigkeiten im Bereich der menschlichen Kognition bis hin zu Schwierigkeiten durch äußere Ablenkung. [Adams84]

- **Wahrnehmungsblockaden**
 Der Mensch lässt sich in seiner Wahrnehmung ganz wesentlich von dem beeinflussen, was er zu sehen oder zu hören erwartet, und diese Erwartungen können auf unterschiedliche Weise mit dem kreativen Problemlösen interferieren. Eine Wahrnehmungsblockade liegt vor, wenn die frühere Erfahrung es schwierig macht, ein Problem aus unterschiedlichen Blickwinkeln zu betrachten. Dieses Phänomen ist unter der Bezeichnung Betriebsblindheit bekannt. Die Funktionsanalyse kann diesen Blockaden entgegenwirken.

- **Emotionale Blockaden**

- **Kulturbedingte Blockaden**

- **Umweltbedingte Blockaden**
 Neben der inneren Einstellung kann aber auch die unmittelbare Umgebung die Kreativität blockieren. Möglicherweise sind die Mitglieder des Kreativteams nicht zur Zusammenarbeit bereit, oder sie werden durch ihre Umgebung zu sehr abgelenkt.

- **Blockaden des Intellekts**
 Diese treten auf, wenn ein Denker nicht in der Lage ist, ein Problem so effizient wie möglich in Angriff zu nehmen. Vielleicht sind seine Problemlösungsstrategien nicht flexibel genug, oder er verfügt nicht über genügend adäquate Informationen, bevor er sich mit dem Problem auseinandersetzt.
3.4.1 Ideen entwickeln

In diesem Grundschritt des Wertanalyse Arbeitsplanes werden Ideen generiert, Lösungsansätze entwickelt und ausgearbeitet sowie Lösungsvorschläge ausgewählt.

Dieser Abschnitt beschäftigt sich mit vielen Entscheidungen die bei der Realisierung von MUCH getroffen wurden und erläutert die Gründe, die hinter diesen Entscheidungen standen. Jedes der folgenden Themen besteht aus einem kurzen Theorieteil und erläutert die getroffenen Entscheidungen. Auf die folgenden Gebiete wird genauer eingegangen:

- Die hierarchische Struktur von MUCH.
- Die Vereinheitlichung von Namen und Bezeichnungen.
- Informationsverwaltung und Publikation der in der lokalen Datenbank erfassten Informationen auf MUCH.
- Die Verwendung von HTML oder XML bei der Präsentation.
- Die Bildformate, die bei MUCH verwendet werden.
- Die Behandlung externer Hyperlinks.

3.4.1.1 Thematische Gliederung bei MUCH

Durch die Vorarbeiten war bereits bekannt, dass eine ungeheure Datenmenge darauf wartet präsentiert zu werden.

Es gibt verschiedene Arten große Datenmengen auf einem Server zu speichern. Ein, den Benutzern vertrautes Modell, ist das hierarchische. Der logische Aufbau (siehe Tabelle 6) ermöglicht es den Besuchern des Museums zusammengehörige Information zu finden. [Feiner99]

1	Allgemeine Information
2	Personen
3	Ausgewählte Projekte
4	Lehre
5	Publikationen und Konferenzen
6	Kooperationspartner und Förderer
7	Ausstattung
8	Gesellschaftliches und Anekdoten
9	Demo und Show

Tabelle 6: Hauptstruktur der Präsentation

Die Informationen sind am lokalen Rechner in der gleichen Struktur abgelegt.
3.4.1.2 Namenskonventionen bei MUCH

Einer der wichtigsten Punkte bei einem großen Projekt ist die Vereinbarung von Namenskonventionen. Es ist unmöglich in einem Team zu arbeiten, wenn jeder Beteiligte andere Ausdrücke verwendet.

Unter anderem werden folgende Namenskonventionen verwendet (siehe [Feiner99]):

- Abhängig von der Sprache (z.B. Englisch oder Deutsch) in der ein Dokument vorliegt wird der Dateiname um „_en“ oder „_de“ erweitert.
- Datumsangaben erfolgen im Format Jahr-Monat-Tag (JJJ-J-MM-TT).
- Sprachspezifische Sonderzeichen werden umgewandelt (ü → ue)
- Auf Abkürzungen wurde, wenn es möglich war, verzichtet.

3.4.1.3 Informationsverwaltung für MUCH

Als Datenbank für die lokale Datenerfassung wurde die weit verbreitete MS Access Datenbank gewählt. Die Erstellung von Formularen, für eine bequeme Eingabe, kann über ein grafisches Interface schnell und einfach erfolgen.

3.4.1.4 Präsentation des Datenbankinhalts

In diesem Abschnitt werden die folgenden Ansätze und die daraus resultierenden Konsequenzen untersucht mit denen Datenbankinhalte im Internet zugänglich gemacht werden:

- Zugriff auf einen Datenbankinhalt mit spezieller Clientsoftware
- Zugriff mittels Java-Applets und ActiveX
- Zugang zu einer Datenbank mittels "Common Gateway Interface" (CGI)
- Publizierung der Informationen aus der Datenbank, in Form von HTML, XML oder WML Dokumenten auf den Webserver.
Zugriff auf einen Datenbankinhalt mit spezieller Clientsoftware

Zugriff mittels Java-Applets und ActiveX
Java-Applets und ActiveX-Steuerelemente werden auf dem Client-Rechner ausgeführt.

Vor- und Nachteile von Java/ActiveX

- Interaktivität
 Java und ActiveX erlauben die Erstellung interaktiver Seiten. Im Vordergrund steht dabei allerdings die Interaktion des Besuchers einer Website mit der Webseite bzw. dem eingebetteten Java-Applet oder ActiveX-Steuerelement. Java und ActiveX sind nur bedingt für die Kommunikation mit dem Server einzusetzen.

- Performancevorteile

- Sicherheitsprobleme
 ActiveX-Steuerelemente stellen immer ein Sicherheitsproblem für den lokalen Rechner dar, auf dem sie ausgeführt werden. Dies liegt daran, dass ActiveX-Steuerelemente im Grunde wie Windows-Betriebssystemerweiterungen arbeiten, die vollen Zugriff auf alle Ressourcen des Rechners haben.

- Plattformabhängigkeit
 ActiveX-Steuerelemente sind auf die Windows-Plattform beschränkt.

Der Zugang zur Datenbank mittels "Common Gateway Interface". [Thiemann98]
Vor- und Nachteile von CGI

- **Interaktivität**
 CGI erlaubt die Implementierung interaktiver und dynamisch erstellter Webseiten. Bestimmte Optionen lassen sich mit CGI-Programmen auf einfache Weise realisieren, wie zum Beispiel die Verarbeitung von Formulareingaben oder die dynamische Erstellung von Webseiten.

- **Browserunabhängigkeit**
 CGI-Programme werden auf dem Server ausgeführt und können dynamisch Webseiten erstellen, die mit allgemein verständlichem HTML aufgebaut sind und somit von beliebigen Webbrowsern dargestellt werden können.

- **Performancenachteile**
 Da CGI-Programme immer auf dem Server ausgeführt werden, können sie die Performance des Servers erheblich beeinträchtigen. Wird eine von einem CGI-Programm dynamisch erstellte Webseite oft angefordert, muss das CGI-Programm im schlimmsten Fall (ohne Caching) genauso oft ausgeführt werden.

- **Sicherheitsprobleme**
 Da CGI-Programme auf dem Server ausgeführt werden, stellen sie für den Server eine Gefahrenquelle dar. Fehlerhafte oder unachtsam programmierte CGI-Programme können von Hackern benutzt werden, um die Zugriffsbeschränkungen eines Servers zu umgehen und auf ansonsten geschützte Daten zuzugreifen. Für den Besucher der Webseite bieten sie erhöhte Sicherheit, da weder Java noch ActiveX auf seinem Computer verwendet werden.

Publizierung der Informationen aus der Datenbank, in Form von HTML oder XML Dokumenten auf MUCH.

Die Präsentation der Informationen aus der lokalen Datenbank auf MUCH

Im Rahmen eines Proseminars am Institut für Informationswissenschaft an der Karl-Franzens Universität Graz wurde die im Anhang befindliche Datenschutzanfrage von den Studierenden an Unternehmen gesandt von denen angenommen wurde, dass sie personenbezogene Daten gespeichert haben. Die Rücklaufquote betrug mehr als 80 %, obwohl mehrere Unternehmen nach vier Wochen einer freundlichen Erinnerung bedurften. Eine genauere Untersuchung der Antworten förderte zu Tage, dass die Antworten meist von Rechtsabteilungen und Prokuristen kamen.

Die lokale Datenbank kann nichtveröffentlichte Daten finden und Auskunft über ihre Quelle geben. Der Hyperwave Information Server findet bei entsprechenden Rechten schnell und komfortabel alle Vorkommen personenbezogener Daten.

Bei der Implementierung der lokalen Datenbank wurden aus diesen Grund drei mögliche Zustände für Daten definiert:

- **Export**
 Den Zustand Export erhielten alle Daten deren Inhalt verifiziert wurde. Sie können im MUCH exportiert werden.

- **Unknown**
 Daten dieser Kategorie konnten noch nicht verifiziert werden oder es gibt Widersprüche. Eine Freigabe solcher Daten ist erst nach eingehender Überprüfung und allfälligen Korrekturen sinnvoll.

- **No Export**
3.4.1.5 Unterschiede zwischen HTML und XML

Informationen strukturieren

Sie geben einer späteren Anwendung die Möglichkeit die entsprechenden Felder auszuwerten oder beispielsweise genau nach einem bestimmten Datum zu suchen.

Cascading Style Sheets (CSS)

Der Begriff Stylesheet kann mit Formatvorlage oder Layoutvorlage übersetzt werden. Hierbei handelt es sich um eine Vorlage zur Umwandlung der logischen Auszeichnungen in die physischen Auszeichnungen. In der CSS-Definition wird beispielsweise angegeben, dass eine Überschrift erster Ordnung in der bestimmten Schrift ausgegeben wird. Sofern der Browser Stylesheets unterstützt, wird er statt der voreingestellten die gewünschte Formatierung auswählen.
In HTML sieht eine Style-Sheet-Definition z.B. wie folgt aus:

```html
<STYLE TYPE="text/css">
  H1 { background-color : black; color : white }
  H2 { background-color : blue; color : red }
</STYLE>
```

Sie kann direkt in den HTML-Sourcecode integriert werden oder als externe Datei einem Dokument zugeordnet werden. Neben der Definition von neuen Formaten für bereits bestehende Befehle können mithilfe der Stylesheets auch Unterklassen von Befehlen gebildet werden, wie das folgende Beispiel zeigt:

```html
<STYLE TYPE="text/css">
  H1.wichtig
  { background-color : yellow; color : black }
  H1.unwichtig
  { background-color : white; color : grey }
</STYLE>
```

Es wurden für eine Überschrift `<H1>` die zwei Klassen wichtig und unwichtig gebildet. Die erste Klasse wird mit schwarzer Textfarbe und gelbem Hintergrund angezeigt. Die zweite definierte Klasse des Tags wird mit grauer Textfarbe und weißem Hintergrund dargestellt.

Verwendung der Formatvorlagen:

```html
<BODY>
  <H1>Normale Überschrift 1. Ordnung</H1>
  <H1 CLASS="wichtig">Wichtige Überschrift</H1>
  <H1 CLASS="unwichtig">Unwichtige Überschrift</H1>
</BODY>
```


Document Object Model (DOM)

Extensible Style Sheet Language (XSL)

Ergänzend zu den Cascading Style Sheets kümmert sich XSL speziell um die Formatvorlagen zu XML. Die Aufgaben von XSL liegen vor allem in zwei Bereichen:

- Die Bildung einer Sprache mit der sich XML-Dokumente in andere Formate konvertieren lassen (Beispielsweise HTML).
- Zur Verfügung stellen eines Vokabulars, das den semantischen Tags bestimmte Formatierungen zuweist (ähnlich den CSS).

Stylesheets haben für XML erheblich an Bedeutung gewonnen, denn abweichend von HTML kennt der Browser bei selbst definierten Befehlen nicht das Anzeigeformat. [Pott99]

HTML und XML bei MUCH

Durch Änderungen an Skriptdateien können Dokumente für MUCH sowohl in HTML oder XML erzeugt und auf den Webserver übertragen werden (siehe [Feiner99]). Da einige Browserversionen XML nicht korrekt darstellen können, wird von allen Dokumenten eine HTML Version erzeugt.

3.4.1.6 Verwendete Bildformate

Die Bilder für MUCH liegen in entweder in gedruckter Form oder in elektronischer Form vor. Gedruckte Bilder müssen durch Scannen digitalisiert, nachbearbeitet, katalogisiert und gespeichert werden. In die Datenbank werden nicht die Bilder direkt aufgenommen, sondern nur deren Dateinamen. [Feiner99]

Die am meisten im WWW vertretenen Bildformate, sind JPEG und GIF. PNG wird seltener benutzt, wird jedoch von vielen Webbrowsern unterstützt.

JPEG

Das JPEG ist gleichzeitig der Name einer Standardisierungsorganisation, eines Grafikformates und eines Bildkompressionsverfahrens.

Das JPEG File Interchange Format (JFIF) ist eine Entwicklung der Firma C-Cube Microsystems zur Speicherung JPEG komprimierter Daten. Durch dieses Verfahren können Bilddaten nahezu beliebig komprimiert werden. Die Qualität der Bilder nimmt mit steigender Komprimierung stark ab. Die Farbtiefe beträgt bis zu 24 Bit. [Holzinger00]

GIF

GIF Bildes als transparent definiert werden kann. An Stellen mit dieser Farbe ist der Hintergrund zu sehen. [Holzinger00]

Grosse Verunsicherung gab es im Winter 1994/95, als die Firma Unisys mit der Meldung an die Öffentlichkeit trat, dass die LZW-Komprimierung von ihr patentiert sei und Unisys beabsichtige, Lizenzgebühren zu verlangen. Die Lizenzpflicht wurde auf alle ab 1995 hergestellten Medien ausgedehnt, die LZW-Kode enthielten, auch wenn die entsprechenden Programme schon älter waren, sowie auf alles, was aus kommerziellen Softwarehäusern kam. "Echte" Freeware scheint von den Gebühren, nicht aber der Lizenzierung, verschont, kommerzielle Programme, die GIF-Bilder laden oder speichern können, werden pro verkauftem Exemplar mit Gebühren in Höhe von 0,45 % des Kaufpreises belegt. Die Bilder selbst oder ihr Betrachten oder Erstellen sind nicht von irgendwelchen Gebühren berührt. [GIF]

PNG
Portable Networks Graphics (PNG) ist ein relativ neues Dateiformat für Bilddaten. Es wurde 1995 speziell für das Internet entwickelt und soll, als Standardformat für verlustlose Komprimierung, GIF ablösen. Es unterstützt eine Farbtiefe von 48 Bit (siehe [Holzinger00]). Ein weiterer Grund für die Entwicklung dieses Formates waren die Patentrechte von UNISYS an GIF.

TIFF

Die Bilder in MUCH

3.4.1.7 Externe Links

Konsequenzen für MUCH

An Stelle von Links zu Dokumenten auf anderen Servern wurden Bilder (Screenshots) dieser Dokumente angefertigt und lokal gespeichert. Andere Dokumente wurden komplett, HTML-Seite und alle Bilder, am lokalen Rechner gespeichert. Der Microsoft Internetexplorer ermöglicht das speichern einzelner Seiten, komplette Websites können mit Offline Webbrowsern auf die lokale Platte gesichert werden.

Unter Ausnutzung der vom Hyperwave Information Server zur Verfügung gestellten Möglichkeiten wurden mit diesen Daten Prototypen für MUCH erstellt:

- Mehrsprachige Bilderalben für Kurzpräsentationen unter Verwendung von Sequences.
- Präsentationen unter Verwendung der Quelltexte, in denen Links zu anderen Servern deaktiviert wurden. Die aktiven Links ermöglichen, eine eingeschränkte, Simulation eines anderen Servers.

Die Präsentationen in MUCH sind nicht identisch mit vollständigen Projekten die am IICM durchgeführt wurden. Deshalb wurden nicht nur Hyperlinks zu anderen Servern deaktiviert, sondern auch solche die auf Seiten des ursprünglichen Projekts verwiesen welche für die Präsentation nicht verwendet wurden. Die reine Deaktivierung der Links mittels eines Scripts wurde der Ursprungpräsentation nicht gerecht, da Fähigkeiten und Umfang nicht mehr ersichtlich waren. Um deaktivierte Hyperlinks erkennen zu können wurden sie unterstrichen in einer anderen Farbe dargestellt. Abhängig vom verwendeten Layout der Ursprungspräsentation wurde diese Farbe gewählt.

Unterschiede und Anwendungsmöglichkeiten von Screenshots und HTML-Seiten auf MUCH

Präsentation in MUCH nicht gefolgt werden kann wurden deaktiviert und ihre Farbe geändert. Durch unterstreichen blieben sie als ehemalige Hyperlinks erkennbar.

Sowohl Screenshots als auch HTML Dokumente ermöglichen Mehrsprachigkeit.

3.5 Lösung verwirklichen

Dieser letzte Abschnitt des Wertanalyse Arbeitplans beschreibt die Umsetzung gefundener Lösungen. Im speziellen Fall wird der Bereich von MUCH beschrieben, der sich mit Diplomarbeiten, Dissertationen und Habilitationen beschäftigt.

Abbildung 21: Hauptauswahl der IICM Datenbank
Die lokale Datenbank garantiert, dass Informationen nur einmal erfasst und Inkonsistenzen vermieden werden. Abbildung 22 zeigt die Relationen innerhalb der Datenbank.

Abbildung 22: Die Relationen in der Datenbank

3.5.1 Wissenschaftliche Arbeiten bei MUCH

- **Quellensuche**
 Auchend der Bibliothek der TU Graz wurden Quellen mit Informationen zu Diplomarbeiten, Dissertationen, und Habilitationen gesucht.

- **Quellenauswahl**
 Die gefundenen Quellen wurden auf ihre Qualität und Brauchbarkeit für die Datenerfassung untersucht. Bei gleichem Inhalt wurden Informationen die in elektronischer Form vorlagen denen in gedruckter Form vorgezogen.
Informationsbeschaffung
Ein wichtiger Abschnitt dieses Schrittes war bei der Recherche zu den Diplomarbeiten die Dokumentation der wechselnden Institutsnamen. Die für die Präsentation nötigen Informationen mussten aus mehreren, geeigneten Quellen bezogen werden.

Informationsbearbeitung und Erstellung der notwendigen Tools

Informationsspeicherung in der Datenbank
Die Informationen wurden vor dem Import in die lokale Datenbank mit bereits vorhandenen Daten überprüft. Auftretende Diskrepanzen wurden vor dem Import gelöst.

Veröffentlichen auf dem Webserver
Für die Veröffentlichung auf dem Webserver standen Skripts zur Verfügung, die HTML oder XML Dateien erzeugen konnten. (siehe [Feiner99])

3.5.2 Recherchen im Internet

Die folgenden Informationen wurden bei Dissertationen präsentiert:
- Name des Verfassers
- Titel (Deutsch und Englisch)
- Umfang der Arbeit, wenn eine durchgehende Nummerierung der Seiten verwendet wurde.
- Publikationsdatum (Monat/Jahr)
- Organisation
- Namen der Begutachter
- Art der Arbeit und erlangter Titel
- Klassifikation nach Wissensgebiet
- Schlagworte (Deutsch und Englisch)
- Kurzfassung (Deutsch und Englisch)
- Bibliothek und Signatur
Zusammenfassung

Zusammenfassung deutsch:

Zusammenfassung englisch:
This thesis describes a new, large-scale Hypermedia project (‘Hyper-G’) currently being developed at the Technical University of Graz. Experience gathered from modern hypermedia systems, large-scale information systems, computer aided instruction and user interface design considerations lead to a number of ideas, features and examples of applications of Hyper-G. They were condensed, put into logical relationship and used to formulate a set of requirements. The requirements, additional design decisions, and a discussion of implementation-related issues are part of this thesis. Also a new concept for the creation of real-time, interaction animation is presented. It is essentially a combinative of Computer Animation and Hypermedia technologies, therefore it is called ‘Hyper-Animation’. This concept is also the basis of some of the more advanced applications of Hyper-G that are described in this thesis. Applications range from information systems and electronic publishing to exhibits that may be found in a virtual museum or exhibition environment.

Verfügbarkeit

Availability:
TGUB; Universitätsbibliothek der Technischen Universität Graz, Technikerstrasse 4, A-8010 Graz, Austria

Signatur:
2.338

Abbildung 23: Präsentation einer Dissertation bei Austrian Research Centers Seibersdorf
3.5.3 Diplomarbeiten

3.5.3.1 Quellensuche

Die folgenden Quellen für Informationen wurden gefunden und auf den Grad ihrer Eignung untersucht:

- Das Studiendekanat für Interfakultäre und Interuniversitäre Studienrichtungen stellte eine Liste der abgeschlossenen Diplomarbeiten der Studienrichtung Telematik am IICM, in Form einer Excel Tabelle, zur Verfügung.

- Die Online-Kataloge der Bibliothek der TU Graz
 - TUG (mittlerweile deaktiviert)
 - OPAC19 V1.0 (mittlerweile deaktiviert)
 - Aleph 500

- Der periodisch erscheinende Bericht Diplomarbeiten und Dissertationen der TU Graz herausgegeben von der Forschungs- und Technologie Information.

- Die Diplomarbeitskurzfassungen in Telematik, der Zeitschrift des Telematik – Ingenieur – Verbandes (TIV)

3.5.3.2 Quellenauswahl

Für die Informationsbeschaffung wurde die Liste des Dekanats, die Kataloge der Bibliothek und die Diplomarbeitenkurzfassungen am Server der TU Graz herangezogen. Sowohl der Bericht des FTI als auch die Kurzfassungen in der Zeitschrift Telematik vermittelten keine neuen Informationen und standen nicht in digitaler Form zur Verfügung.

3.5.3.3 Informationsbeschaffung

Da keine der zur Verfügung stehenden Quellen alle für die Präsentation benötigten Informationen lieferte, mussten die Inhalte der Quellen kombiniert werden.

19 Die Abkürzung OPAC steht für Online Public Access Catalog. Vor Einführung dieser Onlinekataloge setzte sich der Katalog einer Bibliothek aus einer Vielzahl von Einzelkatalogen wie z.B. Autorenkatalog, Schlagwortkatalog, alphabetischem Katalog, Kreuzkatalog, Standortkatalog oder dem systematischen Katalog nach Dezimalzahlen zusammen. [Rauch93, Bertha99]
Die Diplomandenliste des Studiendekanats
Diese Liste führte für alle 137 Diplomarbeiten, die im Zeitraum von Februar 1989 bis September 1998 von Studierenden der Studienrichtung Telematik am IICM geschriebenen wurden, folgende Daten in Form einer Excel Tabelle auf:

- Name des Diplomanden
- Die Nummer des Instituts an dem die Diplomarbeit geschrieben wurde
 - 5060
 - 5061
- Name des Diplomarbeitbegutachters
- Beginndatum der Diplomarbeit
- Enddatum der Diplomarbeit
- Titel der Diplomarbeit
- Datum der zweiten Diplomprüfung

Diplomarbeiten, die von mehreren Diplomanden verfasst wurden, sind in dieser Tabelle mehrmals angeführt.

Die Kataloge der Bibliothek der TU Graz
Während der Recherchen standen drei Onlinekataloge zur Verfügung. Sie enthielten folgende Daten:

- Die Namen aller Verfasser
- Den Titel der Diplomarbeit
- Zusätze zum Titel
- Erscheinungsjahr
- Erscheinungsort
- Die Organisation an der das Werk erstellt wurde
- Den Umfang der Arbeit bei durchgehender Nummerierung\(^{20}\)
- Begleitmaterialien wie CD, VHS Film
- Die Grundsignatur\(^{21}\) und den Standort

TUG

\(^{20}\) Werke bei denen jedes Kapitel einzeln nummeriert ist enthalten diese Information nicht.
\(^{21}\) Im Allgemeinen hat eine Signatur die Form II 123.456. II bedeutet, dass die Höhe des Werks 25 – 35 cm beträgt. Die Zahl ist eine laufende Nummer. [Bertha99]
Der älteste, elektronische Katalog an der TU enthielt, neben den oben angeführten Daten, Kurzfassungen der Arbeiten. Die Verbindung zu diesem Katalog wurde mittels Telnet hergestellt.

OPAC V1.0
Dieses System ermöglichte an der TU Graz erstmals die Suche mit einem Webbrowser. OPAC V1.0 wurde 1999 durch Aleph 500 ersetzt.

Aleph 500

Folgende Vorteile ergaben sich durch die Einführung des neuen Systems:

- Im Katalog ist ersichtlich, ob Bücher oder andere Medien verfügbar sind, wann ein entlehntes Werk wieder zur Verfügung steht und wie viele Vorbestellungen bereits getätigt wurden.
- Verlängerungen und Entlehnungen von Werken können über das Internet erfolgen.
- Geplant sind elektronische Links im Katalog zu Volltexten und Inhaltsverzeichnissen, sowie österreichweite Fernleihe über den Gesamtkatalog.
Suche im OPAC V1.0

Da zu Beginn der Recherchen das neue Aleph System noch nicht zur Verfügung stand wurde für einen Grossteil der Recherche der OPAC V1.0 herangezogen. Die Untersuchung einiger Diplomarbeiten ergab, dass alle Diplomarbeiten im Feld Organisation den Namen des Institutes beinhalten an dem sie geschrieben wurden.

Entwicklung der Institutsnamen

- 1977/78 Der Beginn
 805 Institut für Angewandte Mathematik und Informationsverarbeitung
 Vorstand: Helmut Florian, Steyrergasse 17, A-8010 Graz
 806 Ordinariat für Informationsverarbeitung

- 1978/79 Das Ordinariat für Informationsverarbeitung wurde mit Hermann Maurer besetzt
 805 Institut für Angewandte Mathematik und Informationsverarbeitung
 Vorstand: Helmut Florian, Steyrergasse 17, A-8010 Graz
 806 Ordinariat für Informationsverarbeitung
 Vorstand: Hermann Maurer, Steyrergasse 17, A-8010 Graz

- 1979/80 Das Institut für Angewandte Mathematik und Informationsverarbeitung wurde umbenannt
 805 Institut für Angewandte Mathematik
 Vorstand: Helmut Florian, Steyrergasse 17, A-8010 Graz
 806 Ordinariat für Informationsverarbeitung
 Vorstand: Hermann Maurer, Steyrergasse 17, A-8010 Graz

- 1980/81 Das Ordinariat für Informationsverarbeitung wurde umbenannt
 806 Institut für Informationsverarbeitung
 Vorstand: Hermann Maurer, Steyrergasse 17, A-8010 Graz

- 1981/82 Die Institutsnummer wurde geändert
 506 Institut für Informationsverarbeitung
 Vorstand: Hermann Maurer, Steyrergasse 17/4, A-8010 Graz

- 1982/83 Die Adresse hat sich geändert
 506 Institut für Informationsverarbeitung
 Vorstand: Hermann Maurer, Schießstattgasse 4a, A-8010 Graz
• 1986/87 Der Vorstand hat sich geändert
 506 Institut für Informationsverarbeitung, Schießstättgasse 4a, A-8010 Graz

• 1989/90 Namensänderung und Institutsteilung
 505 Institut für Angewandte Informationsverarbeitung und Informationstechnologie
 Vorstand: Reinhard Posch, Klosterwiesgasse 32/I, A-8010 Graz
 506 Institut für Grundlagen der Informationsverarbeitung und Computergestützte neue Medien
 Vorstand: Hermann Maurer, Schießstättgasse 4a, A-8010 Graz

• 1991/92 Institutsteilung
 506/A Institut für Grundlagen der Informationsverarbeitung und Computergestützte neue Medien
 Vorstand: Hermann Maurer, Schießstättgasse 4a, A-8010 Graz
 506/B Ordinariat für Grundlagen der Informationsverarbeitung
 Vorstand: Wolfgang Maass, Klosterwiesgasse 32/II, A-8010 Graz

• 1992/93 Namensänderung und Institutsteilung
 506 Institut für Informationsverarbeitung und Computergestützte neue Medien
 Vorstand: Hermann Maurer, Schießstättgasse 4a, A-8010 Graz
 508 Institut für Grundlagen der Informationsverarbeitung
 Vorstand: Wolfgang Maass, Klosterwiesgasse 32/II, A-8010 Graz
 Schießstättgasse 4/I, A-8010 Graz

• 1993/94 Institutsteilung (Teil B: Münzgrabenstraße 11/II, A-8010 Graz)
 506 Institut für Informationsverarbeitung und Computergestützte neue Medien
 Vorstand: Hermann Maurer, Schießstättgasse 4a, A-8010 Graz
 Münzgrabenstraße 11/II, A-8010 Graz

• 1999/2000 Bildung zweier Arbeitsgruppen mit eigenen Leitern (506/1 und 506/2)
 506 Institut für Informationsverarbeitung und Computergestützte neue Medien
 Vorstand: Hermann Maurer, Schießstättgasse 4a, A-8010 Graz
 506/1 Arbeitsgruppe IICM
 Leiter: Hermann Maurer, Münzgrabenstraße 11/II, A-8010 Graz
 506/2 Arbeitsgruppe IST (Institut für Softwaretechnologie)
 Leiter: Peter Lucas, Münzgrabenstraße 11/I und II, A-8010 Graz

11. September 2000 Umzug in die Infeldgasse 16c
Der Suchbegriff „Informationsverarbeitung“ erschien für die Suche geeignet. Die zusätzliche Selektion von Diplomarbeiten folgender Institute musste dadurch in Kauf genommen werden:

- Institut für Angewandte Mathematik und Informationsverarbeitung
- Institut für Angewandte Informationsverarbeitung und Informationstechnologie (später Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie)
- Institut für Grundlagen der Informationsverarbeitung

Diplomarbeiten an den folgenden Instituten wurden dadurch zusätzlich selektiert:

- Institut für Technische Informatik
- Institut für Informationswissenschaft an der Karl-Franzens Universität Graz

Suchprofil Verlag/Ort = INFO und Pub.art = Diplom.

Diese Suchabfrage ergab 676 Treffer. Erwartet wurden 350 – 400 relevante Suchergebnisse. Die Schätzung beruht auf den 137 Studierenden der Studienrichtung Telematik, die im Studienjahr 1985/86 als Studienversuch (F074) eingeführt wurde, und maximal doppelt so vielen Studierenden des länger bestehenden Studiums Technische Mathematik.

Zusätzlich zu den erwarteten Instituten wurden Diplomarbeiten der Abteilung für Mathematische Geodäsie und Geoinformation des Instituts für Theoretische Geodäsie im Katalog gefunden.

Es stellte sich heraus, dass trotz der ausschließlichen Suche im Feld Verlag/Ort, in dem die Information über die Organisation abgelegt ist, vom System auch in anderen Feldern nach "*Info*" gesucht wurde.

Abbildung 24 zeigt die Karteikarte einer Diplomarbeit aus dem Bibliothekskatalog OPAC V1.0 mit einer Erläuterung der dargestellten Informationen.
Die folgende Auswertung des Suchergebnisses und der Vergleich mit der Liste des Dekanats zeigte, dass der Suchbegriff gut gewählt war:

- Durch diese Abfrage wurden bis auf eine alle erwarteten Diplomarbeiten gefunden.
- 182 Datensätze wurden durch das Vorkommen von "*Info*" an einer anderen Stelle im Datensatz zusätzlich als Suchergebnis geliefert.

Tabelle 7: Auswertung der Suchergebnisse

<table>
<thead>
<tr>
<th>Relevant</th>
<th>321</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht relevant erwartet</td>
<td>173</td>
</tr>
<tr>
<td>Nicht relevant unerwartet</td>
<td>182</td>
</tr>
<tr>
<td>Summe</td>
<td>676</td>
</tr>
</tbody>
</table>

Die Auswertung der Suchergebnisse führte zu den in Tabelle 7 aufgelisteten Ergebnissen. Zu diesem Zeitpunkt war der Diplomarbeitsstand am IICM 321; an allen anderen Informatikinstituten waren in Summe 173 Arbeiten verfasst worden.
Die Diplomarbeitskurzfassungen am Server der TU Graz

Folgende Informationen sind auf diesen Seiten zu finden:

- Verfasser
- Sachtitel
- Schlagwörter
- Impressum
- Organisation
- Begutachter / Betreuer
- Kurzbeschreibung / Abstract

Mit den in den vorangegangenen Schritten gewonnenen Informationen konnte anschließend eine Volltextsuche durchgeführt werden. Als Suchbegriff wurde entweder der Name des Verfassers oder ein markantes Wort aus dem Titel herangezogen. Dabei war zu beachten, dass ältere Einträge keine Umlaute enthielten.

3.5.3.4 Informationsbearbeitung

Das Ziel dieses Schrittes war es, die Informationen dieser Quellen in eine einheitliche Form zu bringen, so dass für jeden Verfasser ein Datensatz existiert. Die automatisierte Übernahme in eine MS Access Datenbank sollte ermöglicht werden. In diesem Zusammenhang wurden mehrere Konverter in Visual Basic konzipiert und implementiert.

Vorgehensweise

Die folgenden Informationen aus dem OPAC V1.0 wurden für die lokale Datenbank benötigt:

- Verfasser
- Titel
- Zusätze zum Titel
- Erscheinungsjahr
- Organisation
- Grundsignatur und Begleitmaterial

Da bereits eine Tabelle zur Verfügung stand wandelte ich den Inhalt der Karteikarten mit einer Visual Basic Applikation in eine weitere Tabelle um, mit dem Ziel die beiden Tabellen zu verschmelzen (siehe Abbildung 25).

Abbildung 25: Visual Basic Konvertierungsprogramm

Für die Datenbank nicht relevante Informationen aus der Karteikarte (siehe Abbildung 24) wurden gelöscht. Die Trennung der Einträge erfolgte durch Tabulatorzeichen.

Durch Modifikationen des Programms konnten Informationen aus allen drei Katalogen der TU bearbeitet werden. Es wurden dadurch Datensätze mit dem folgenden Inhalt generierten:

- Alle Verfasser
- Titel
- Erscheinungsjahr
- Grundsignatur und Begleitmaterial

Diese Daten wurden mit Begutachter- und Studienrichtungsinformationen aus der Excel Tabelle ergänzt. Da bei älteren Katalogeinträgen keine Umlaute verwendet wurden wurde die Schreibweise von Namen und Titel in eine einheitliche Form gebracht.

Ein direkter Import in die Datenbank konnte auf Grund von Problemen mit den bereits vorhandenen Personendaten nicht durchgeführt werden. Auf diese Probleme und deren Behebung wird später ausführlicher eingegangen.

Folgende Kategorien wurden für die Farbmarkierung verwendet:

- Widersprüchliche Informationen der drei verwendeten Datenquellen. (rot)
- Informationen die offensichtlich falsch sind. (rot)
- Informationen die zu Verwechslungen führen können. (gelb)
- Informationen die der weiteren Nachforschung bedürfen. (gelb)
- Informationen die zweifelhaft sind. (gelb)
- Informationen die von Interesse sind. (blau)

Sachverhalte, die einer näheren Aufklärung bedurften, wurden, entsprechend den bereits angeführten Richtlinien, farblich markiert. Danach wurden nach ausführlichen Vergleichen mit anderen Quellen und Rückfragen die aufgetretenen Diskrepanzen behoben.

Das folgende Beispiel zeigt einen dieser Widersprüche auf und dokumentiert die Vorgehensweise die gewählt wurde, um eine hohe Qualität der Arbeit zu sichern.

<table>
<thead>
<tr>
<th>Bibliothek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rahstorfer, Kurt: Automatisches Erstellen von Prüfungszeugnissen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excel Tabelle des Dekanats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rahstorfer, Kurt: Automatisches Erstellen von Prüfungszeugnissen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diplomarbeitenkurzfassung am TU Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatisches Erstellen von Prüfzeugnissen</td>
</tr>
<tr>
<td>Automatically Creation of Test Certificates</td>
</tr>
</tbody>
</table>

Tabelle 8: Informationen aus drei Quellen

Zitat aus der Kurzfassung:
Die Firma Pewag Austria GmbH ist ein wichtiger Kettenproduzent und muß für die meisten ihrer Produkte Prüfzeugnisse (PZ) mitliefern, mit denen max. zulässige Belastungswerte zugesichert werden.

Die Bibliothek übernimmt keine Daten vom Dekanat, sondern katalogisiert nach dem vorliegenden Werk. Zwei unabhängige Quellen waren für "Prüfungszeugnisse" und eine für "Prüfzeugnisse".

Die einzige Quelle, die als zuverlässig erachtet werden kann, ist die Diplomarbeit selbst. Es gibt zwei Möglichkeiten der Verifikation:

- Die Kontaktaufnahme mit den zuständigen Organen der Universitätsbibliothek.

In diesem speziellen Fall war ich sicher, dass meine Interpretation des Titels die richtige war und wählte deshalb den Weg der Kontaktaufnahme.

Dies äußerte sich durch folgende Verhaltensweisen: Gefundene Lösungsmöglichkeiten wurden im Team diskutiert, neue Vorschläge zur Lösung von Problemen sofort an die anderen Teammitglieder weitergeleitet. Auftauchende Probleme wurden sofort im Team diskutiert und in gemeinsamer Anstrengung gelöst.
Ein weiterer Punkt der für eine hohe Qualität spricht ist der § 12 (1) des Datenschutzgesetzes (DSG). Dieser behandelt die Pflicht zur Richtigstellung bzw. Löschung:

Jeder Auftraggeber hat unrichtige Daten unverzüglich, längstens jedoch binnen zwei Wochen nach Feststellung des der Verarbeitung zugrunde zu legenden Sachverhalts richtigzustellen, zu löschen oder die Richtigstellung oder Löschung zu veranlassen.

3.5.3.5 Informationsspeicherung in der lokalen Datenbank

Der erste Schritt war die Aufnahme von Verfassern und Betreuern in die bereits am IICM bestehende Personendatenbank (siehe [Feiner99]). Abbildung 26 zeigt die unmittelbar für diese Erfassung relevanten Beziehungen. Neueinträge konnten problemlos eingefügt werden, bei den bereits bestehenden Einträgen traten jedoch folgende Probleme auf, die behoben werden konnten:

- Behandlung eines Namenswechsels
- Abweichende Schreibweise von Namen
- Unterschiedliche Namen aber die gleiche Personen (z.B. Emmerich bzw. Emo)

Im Zuge der Datenübernahme stellte sich heraus, dass weder die Namen der Verfasser noch die der Begutachter und Betreuer in der Datenbank eindeutig sind, was bei mehr als 1200 Einträgen in der Personendatenbank zu erwarten war. Bei bereits bestehenden Personendaten musste, vor der Migration der Datensätze in die Datenbank, eine Plausibilitätsprüfung vorgenommen werden.

Im Laufe der Recherche kam es zu einer Häufung dieser Problemfälle, sodass sich dieser Mehraufwand als gerechtfertigt herausstellte.
3.5.4 Dissertationen

Die Suche nach Dissertationen gestaltete sich wesentlich schwieriger. Bei Dissertationen wird, im Gegensatz zu Diplomarbeiten, die mit Hilfe des Institutsnamens gefunden werden können, nur die Fakultät erfasst.

3.5.4.1 Quellensuche

Für die Recherche über Dissertationen standen nahezu die gleichen Quellen zur Verfügung wie für die Suche nach Diplomarbeiten:

- Die Online-Kataloge der Bibliothek der TU Graz
 - TUG (mittlerweile deaktiviert)
 - OPAC V1.0 (mittlerweile deaktiviert)
 - Aleph 500

- Die Dissertationsdatenbank bei Austrian Research Centers Seibersdorf (ARCS), die am IICM implementiert wurde. [Platzer99]

- Die Diplomarbeitskurzfassungen am Server der TU Graz, betrieben von der zuständigen Einrichtung der TU Graz für Forschungs- und Technologie Information (FTI).

- Der periodisch erscheinende Bericht "Diplomarbeiten und Dissertationen", der TU Graz herausgegeben von der FTI.

- Die Homepage von Professor Maurer.

3.5.4.2 Quellenauswahl

Für die Informationsbeschaffung wurden die Homepage von Professor Maurer, die Dissertationsdatenbank, die Kataloge der Bibliothek der TU Graz und die Dissertationskurzfassungen am TU Server herangezogen.
3.5.4.3 Informationsbeschaffung

Einige Dissertationen wurden in der Bibliotheksdatenbank durch die Verwendung des Suchbegriffes "info*" gefunden, obwohl in der Rubrik "Organisation" die Fakultät angeführt sein sollte. Diese Tatsache ist der Bibliotheksleitung bekannt.

Mit einer Liste möglicher Begutachter wurde eine Volltextsuche im Online-Katalog TUG, in der Dissertationsdatenbank, und unter den Dissertationskurzfassungen durchgeführt. Die gefundenen Datensätze wurden mit zuvor erfassten Informationen verglichen.

3.5.4.4 Informationsbearbeitung und Speicherung

Für diese Tätigkeiten konnte die gleiche Vorgehensweise gewählt werden wie bei den Diplomarbeiten:
- Verschmelzen der einzelnen Datensätze
- Verifikation der Informationen
- Import in die lokale Datenbank

3.5.5 Habilitationen

Die Namen der Habilitanden wurden am IICM erfragt. Die Werke wurden in den Katalogen der Bibliothek der TU Graz gesucht und in der lokalen Datenbank erfasst.
3.5.6 Veröffentlichen auf dem Webserver

Abbildung 27: Diplomanden XML

Abbildung 28: Dissertanten HTML
Die Zukunft wissenschaftlicher Arbeiten an der TU Graz

Im Zuge meiner Arbeiten war eine enge Zusammenarbeit mit der Bibliothek der TU Graz notwendig. Fehler bei der Katalogisierung wurden dadurch beseitigt. Neue Wege für die Volltexterfassung dieser Arbeiten wurden, mit der Direktorin der Bibliothek, diskutiert.

Viele wissenschaftliche Arbeiten liegen bereits in elektronischer Form vor. Wenn bekannt wird, dass die wissenschaftlichen Arbeiten auf dem MUCH Server präsentiert werden besteht die Chance, dass von Absolventen der Universität auch ältere Werke für den Server angeboten werden.
4 Anhang

4.1 Anhang A: Der Wertanalyse Arbeitsplan

Die Vorgehensweise bei Wertanalyseprojekten ist durch den in Tabelle 9 beschriebenen Arbeitsplan nach ÖNORM A 6757, vorgegeben. [Lercher98]

<table>
<thead>
<tr>
<th>Grundschritte</th>
<th>Teilschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA – Arbeit vorbereiten</td>
<td>WA – Grobziele formulieren</td>
</tr>
<tr>
<td></td>
<td>WA – Arbeit planen</td>
</tr>
<tr>
<td>Ausgangssituation ermitteln</td>
<td>Informationen beschaffen</td>
</tr>
<tr>
<td></td>
<td>Kosten festlegen</td>
</tr>
<tr>
<td></td>
<td>Funktionen feststellen</td>
</tr>
<tr>
<td></td>
<td>Entwicklungen einschätzen</td>
</tr>
<tr>
<td></td>
<td>Ausgangssituation darstellen</td>
</tr>
<tr>
<td>Zielsystem entwickeln</td>
<td>Funktionsziele entwickeln</td>
</tr>
<tr>
<td></td>
<td>Kostenziele entwickeln</td>
</tr>
<tr>
<td></td>
<td>Beurteilungsbedingungen festlegen</td>
</tr>
<tr>
<td></td>
<td>Zielsystem darstellen</td>
</tr>
<tr>
<td>Ideen entwickeln</td>
<td>Lösungsansätze entwickeln</td>
</tr>
<tr>
<td></td>
<td>Lösungsmöglichkeiten ausarbeiten</td>
</tr>
<tr>
<td>Lösungsvorschläge auswählen</td>
<td>Lösungsmöglichkeiten beurteilen</td>
</tr>
<tr>
<td></td>
<td>Lösungsvorschläge darstellen</td>
</tr>
<tr>
<td>Lösung verwirklichen</td>
<td>Lösung bestimmen</td>
</tr>
<tr>
<td></td>
<td>Lösungsverwirklichung planen</td>
</tr>
<tr>
<td></td>
<td>Lösung verwirklichen</td>
</tr>
</tbody>
</table>

Tabelle 9: Wertanalyse Arbeitsplan (ÖNORM A 6757)

Die Grund und Teilschritte der Wertanalyse werden im folgenden kurz beschrieben [Lercher98, Ofner00]:

Seite 82
4.1.1 WA – Arbeit vorbereiten

Für die zielgerichtete und effiziente Durchführung eines Projektes ist die sorgfältige Vorbereitung der Arbeit eine wichtige Voraussetzung.

4.1.1.1 WA – Grobziele formulieren

4.1.1.2 WA – Arbeit planen

4.1.2 Ausgangssituation ermitteln

Dieser Grundschritt dient dem gesamthaften Kennenlernen der Aufgabe mit dem Zweck, sich durch das Abstrahieren in Form von Funktionen möglichst weit von bereits bestehenden Teillösungen und Vorurteilen zu lösen und ein breites Lösungsfeld zu erschließen.

4.1.2.1 Informationen beschaffen

Das Sammeln, Ordnen und Verarbeiten von Informationen, die aus der Sicht der gestellten Aufgabe und des gestellten Ziels notwendig sind, soll dazu beitragen, Schwerpunkte für die Arbeit zu erkennen, Erkenntnisse zu formulieren, und Zusammenhänge aufzuzeigen. Für einen zügigen Arbeitsfortschritt ist es wichtig, dass man, bereits zu Beginn der Arbeit, all die Informationen besitzt, die benötigt werden. Das Sammeln und Ordnen von allgemeinen Informationen (Anwender- und Marktdaten, relevante Gesetze, Vorschriften, etc.) und das Erstellen einer Problemliste sowie die Ermittlung des aktuellen Wissensstandes ermöglichen es, Schwerpunkte für die weitere Arbeit festzulegen.
4.1.2.2 Kosten festlegen

Zur betriebswirtschaftlichen Beurteilung der Arbeit sind Kosteninformationen (Kalkulationsunterlagen, Vergleichskosten, ABC-Analysen und dgl.) einzuholen. Sie sind so zu verarbeiten, dass sich Kostenstrukturen und Kostenschwerpunkte erkennen lassen.

Bei Softwareprodukten sind die Kosten für die Gesamteinsatzzeit des Produktes von höchstem Interesse. Das Ziel ist es diese Kosten möglichst gering zu halten. Höhere Kosten die durch diesen Ansatz bei der Erstellung der Software entstehen können, werden, durch geringere Kosten während des Betriebs, innerhalb kürzester Zeit kompensiert.

4.1.2.3 Funktionen feststellen

Dieser Schritt umfasst im wesentlichen die Analyse der Funktionen des Untersuchungsobjektes. Üblicherweise geht das Feststellen und Gliedern der Funktionen dabei in einem mehrstufigen Prozess vor sich:

Erfassen des Objekts

Benennen der Funktionen
Wird der Abstraktionsgrad zu gering gewählt, so wird das Ergebnis der kreativen Phase zu stark am Ist-Zustand orientiert sein. Wird der Abstraktionsgrad zu hoch gewählt, so werden eine große Anzahl von Ideen produziert werden, welche wenig bis gar nichts mit der eigentlichen Problemstellung zu tun haben.

Das Feststellen einer Funktion kann in vier Schritten erfolgen, wie hier am Beispiel eines Radiergummis gezeigt wird:

1. Aufgabe erkennen: Der Radiergummi entfernt meine Schrift.
3. Funktion formulieren: Bleistiftstrich ausradieren²²
4. Beschreibung verfremden: Zeichen löschen

Strukturieren der Funktionen
Funktionen lassen sich in Haupt- und Nebenfunktionen gliedern. Eine Hauptfunktion wird zur Realisierung in Nebenfunktionen zerlegt.

<table>
<thead>
<tr>
<th>Hauptfunktion</th>
<th>Nebenfunktion (2. Stufe)</th>
<th>Nebenfunktion (3. Stufe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wozu</td>
<td>→ Wie</td>
<td>→ Wozu</td>
</tr>
<tr>
<td>Institut präsentieren</td>
<td>Institut vorstellen</td>
<td>Personen vorstellen</td>
</tr>
</tbody>
</table>

Tabelle 10: Funktionsgliederung

Neben erwünschten Funktionen können auch unerwünschte Funktionen auftreten. Diese lassen sich in vermeidbare und unvermeidbare Funktionen gliedern.

Die erwünschte Funktion einer Lampe ist "Licht spenden" unerwünschte Funktionen sind "Wärme erzeugen"²³ und "Energie verbrauchen". Je nach Lösungsansatz handelt es sich hierbei um vermeidbare oder unvermeidbare unerwünschte Funktionen.

²² Dieser Abstrahierungsgrad ist noch nicht geeignet etwas neues zu schaffen. Die Einschränkung auf Bleistift engt zu sehr ein.
²³ Bei einigen Arten von Lampen, wie z.B. Infrarotlampen, ist "Wärme erzeugen" erwünscht.
4.1.2.4 Entwicklungen einschätzen

Entwicklungen, die sich aus dem Umfeld ergeben, sollen erfasst, wenn möglich in ihren Auswirkungen abgeschätzt, und aufgezeigt werden. Die Ergebnisse dieser Einschätzung können direkt in den Grundschritt 3 "Zielsystem entwickeln" eingehen.

Die folgenden drei Bereiche sollen besonders beachtet werden:

- Marktentwicklungen
- Technologische Trends
- Soziale und politische Veränderungen

4.1.2.5 Ausgangssituation darstellen

Das zu untersuchende Objekt wird einer kritischen Prüfung unterzogen. Bei zu gestaltenden Objekten wird die Prüfung auf der Basis der detaillierten Aufgabenstellung (z.B. Pflichtenheft) vorgenommen. Bei Wertverbesserungen ist ein wesentlicher Bestandteil dieses Teilschrittes die Beurteilung des Ausmaßes der Funktionserfüllung.

Man unterscheidet dabei zwischen drei Arten von Funktionen die einer Korrektur bedürfen:

- übererfüllte Funktionen\(^{25}\) (Funktionserfüllungsgrad größer als 100 %),
- untererfüllte Funktionen (Funktionserfüllungsgrad kleiner als 100 %) und
- unnötige Funktionen

Abbildung 29: Tankverschluss [Orth68]

Abbildung 29 zeigt zwei Ausprägungen eines Tankverschlusses. Der in der Abbildung links dargestellte Verschluss wurde aus Messing hergestellt und hatte ein Gewinde, die Billigversion besteht aus Polyamid und erfüllt dieselbe Funktion.

Funktion: Behälter verschließen
Kostenersparnis: 82,5%

\(^{24}\) Meist werden Gesetzesänderungen unter dem Begriff politische Veränderungen verstanden.
\(^{25}\) Die Übererfüllung von Funktionen verursacht meist höhere Kosten als geplant, da dabei Features realisiert werden, die von Kunden nicht honoriert werden.
4.1.3 Zielsystem entwickeln

Dabei geht es um die Entwicklung von Zielen, welche die Grundlage für die nachfolgende Ideensuche und die Bewertung der Lösungsansätze darstellen.

4.1.3.1 Funktionsziele entwickeln

Aus der funktionsorientierten Analyse des Ist-Zustandes, und der daran anschließenden Feststellung des Funktionserfüllungsgrades, sowie aus den funktionsorientierten Vorgaben, lassen sich Funktionsziele ableiten.

4.1.3.2 Kostenziele entwickeln

Die Kostenziele, die sich aus den Sollkosten ableiten lassen, werden unter Berücksichtigung der Ausgangssituation, und der Grobziele festgelegt.

4.1.3.3 Beurteilungsbedingungen festlegen

Aus der umfassenden Kenntnis des Objektes, seines Umfeldes und den festgelegten Funktions- und Kostenzielen, lassen sich die Beurteilungsbedingungen ableiten, mit denen die gefundenen Lösungsmöglichkeiten beurteilt werden. Das frühzeitige Festlegen von Beurteilungsbedingungen trägt zu einer objektiveren Bewertung der Lösungsansätze bei.

Beispiele für Beurteilungsbedingungen sind:

- Geringste Erstellungskosten
- Geringste Gesamtkosten
- Originalität der Lösung
- Zukunftssicherheit

4.1.3.4 Zielsystem darstellen

Die zuvor erarbeiteten Funktions- und Kostenziele werden gemeinsam mit den Beurteilungsbedingungen dargestellt, und der Zusammenhang mit der Aufgabe und den Grobzielen niedergeschrieben.

4.1.4 Ideen entwickeln

4.1.4.1 Lösungsansätze entwickeln

Auf der Basis des Zielsystems werden Lösungsansätze entwickelt. Dies kann auf zwei Arten erfolgen:

- Auswerten vorhandener Daten
- Entwickeln neuer Ideen

Beim Auswerten vorhandener Daten werden Anregungen, Verbesserungs- und Änderungsvorschläge von Mitarbeitern, Kunden und Lieferanten herangezogen, Markt- und Wettbewerbsinformationen genutzt, Schrifttum, Datenbanken, Normen und Patentschriften, etc. ausgewertet.

Beim Entwickeln neuer Ideen werden mittels Kreativitätstechniken neue Ideen gesucht.

4.1.4.2 Lösungsmöglichkeiten ausarbeiten

Aus der großen Menge an Lösungsansätzen werden doppelte oder nicht realisierbare Ansätze ausgeschieden, gute Ideen hervorgehoben und zu Lösungsmöglichkeiten weiterentwickelt.

4.1.5 Lösungsvorschläge auswählen

4.1.5.1 Lösungsmöglichkeiten beurteilen

Aufgrund der im Teilschritt Zielsystem entwickeln festgelegten Beurteilungsbedingungen werden die Lösungsmöglichkeiten auf ihre Zielerfüllung hin überprüft und anschließend entsprechend dem Grad der Zielerfüllung und dem Umsetzungsrisiko gereiht.

4.1.5.2 Lösungsvorschläge darstellen

Die Lösungsvorschläge werden mit allen vorhandenen Daten dokumentiert und begründet. Im Idealfall werden mehrere Lösungsvorschläge ausgearbeitet.

4.1.6 Lösung verwirklichen

Dieser Schritt dient der Umsetzung der Arbeit in die Praxis und schließt die Arbeit ab.

4.1.6.1 Lösung bestimmen

Die Wertanalysegruppe legt dem Auftraggeber mehrere detaillierte Vorschläge zur Auswahl vor, wobei die Arbeitsgruppe aufgrund ihres Wissens eine klare Empfehlung für eine bestimmte Lösung abgeben soll. Die Entscheidung kann somit auf eine Ja/Nein-Entscheidung

26 Auf Grund der Datendokumentation haben Wertanalyseberichte meist einen Umfang von 200 – 400 Seiten.
reduziert werden. Der Auftraggeber bestimmt, wer für die Verwirklichung der Lösung verantwortlich ist.

4.1.6.2 Lösungsverwirklichung planen

4.1.6.3 Lösung verwirklichen

4.2 Anhang B: Muster einer Datenschutzanfrage

Muster Datenschutzanfrage

Absender: Name, Adresse, andere Identifikationsdaten

Datenverarbeiter: Name, Adresse

Datum

Betreff: Auskunft gemäß Datenschutzgesetz – DVR-Nr.

Sehr geehrte Damen und Herren!

Ich ersuche Sie unter Hinweis auf §1 Abs. 3 und §11 bzw. 25 DSG um Beantwortung der folgenden Fragen:

Welcher Art sind die Daten, die Sie über mich speichern?

Welchen Inhalt haben diese Daten, woher stammen Sie, wozu werden Sie verwendet, an wen wurden Sie übermittelt?

Aufgrund welcher Vertrags- bzw. Rechtsgrundlage werden die Daten a) ermittelt, b) verarbeitet, c) benützt und d) übermittelt?

Sie werden ersucht, auch alle anfallenden Daten zu beauskunften, die sich in anderen Dateien befinden, jedoch über Schlüssel-, Such- und Referenzbegriffe mit meinen personenbezogenen Daten direkt oder indirekt verknüpft werden können (§3 DSG).

Werden die Daten nach §19 DSG verarbeitet, ersuche ich um die zusätzliche Angabe von Name und Anschrift Ihres Dienstleisters. Wenn Sie Daten im internationalen Datenverkehr verarbeiten, ersuche ich Sie unter Hinweis auf die §§ 32-34 DSG, die Geschäftszahl der Genehmigung durch die Datenschutzkommission anzugeben.

Ich kenne ihre DVR-Nummer nicht und bitte Sie um entsprechende Mitteilung.

Sollten Sie an meiner Mitarbeit nach §11 bzw. §25 DSG interessiert sein, so bitte ich Sie um eine Liste Ihrer Verarbeitungen.

Als gesetzlich vorgeschriebenen Beitrag zur Mitarbeit, jedoch ohne Einschränkung des Auskunftsumfangs, gebe ich Ihnen in der Beilage jene Verarbeitungen bekannt, von denen ich glaube, dass Sie Daten über mich enthalten.

Zum Nachweis meiner Identität möchte ich Sie darauf hinweisen, dass Sie Ihre Auskunft mit RSa oder eingeschrieben, eigenhändig, mit Rückschein zulassen können. Die Post überprüft dann die Identität.

Gemäß §11 bzw. §25 DSG hat die Auskunft binnen vier Wochen schriftlich, kostenlos und in allgemein verständlicher Form zu erfolgen.

Mit freundlichen Grüßen
4.3 Anhang C: Die chronologische Entwicklung von XML

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Ereignis</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>Hypertext als Theorie entwickelt von Ted Nelson</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>Generalized Markup Language von IBM entwickelt</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>Standard Generalized Markup Language festgelegt im ISO Standard 8879</td>
<td>SGML</td>
</tr>
<tr>
<td>1989</td>
<td>Hyper Text Markup Language entwickelt von Tim Berners-Lee im CERN in Genf</td>
<td>HTML</td>
</tr>
<tr>
<td>1994</td>
<td>Hyper Text Markup Language 2.0 erstmals unter Leitung des W3C als Standard verabschiedet</td>
<td>HTML 2.0</td>
</tr>
<tr>
<td>1994</td>
<td>Cascading Style Sheets 1.0 als Ergänzung zu HTML verabschiedet</td>
<td>CSS 1.0</td>
</tr>
<tr>
<td>1996</td>
<td>Hyper Text Markup Language 3.2 verabschiedet nachdem es zu Version 3.0 keine Einigung gab</td>
<td>HTML 3.2</td>
</tr>
<tr>
<td>1996</td>
<td>Extensible Markup Language 1.0 zunächst als Diskussionsvorschlag verabschiedet</td>
<td>XML 1.0</td>
</tr>
<tr>
<td>1997</td>
<td>Hyper Text Markup Language 4.0 im Dezember als Richtlinie vom W3C verabschiedet</td>
<td>HTML 4.0</td>
</tr>
<tr>
<td>1998</td>
<td>Cascading Style Sheets 2.0 Weiterentwicklung des bestehenden CSS-Standards</td>
<td>CSS 2.0</td>
</tr>
<tr>
<td>1998</td>
<td>Extensible Markup Language 1.0 als Standard vom W3C beschlossen</td>
<td>XML 1.0</td>
</tr>
<tr>
<td>1998</td>
<td>Extensible Style Language 1.0 im August vorerst als Arbeitsvorschlag zur Diskussion gestellt</td>
<td>XSL 1.0</td>
</tr>
</tbody>
</table>

Tabelle 11: Chronologische Entwicklung von XML [Pott99]
4.4 Glossar

| 3G | Bezeichnung für die dritte Generation von Mobiltelefonen
Nach der analogen und der GSM Generation sind UMTS und EDGE Vertreter der dritten Mobilfunkgeneration. |
|---|---|
| ADSL | Asymmetric Digital Subscriber Line
| API | "Application Programmer's Interface" oder "Application Programming Interface"
Programmier- und Anwendungsschnittstelle |
| ASP | Applikations-Service-Provider
| ATS | Austrian Shilling
Österreichischer Schilling |
| AVA | Administration Value Analysis
Wertanalyse in der Administration |
| BSI | Bundesamt für Sicherheit in der Informationstechnik
www.bsi.de |
| BTX | Bildschirmtext |
| BVG | Bundesverfassungsgesetz
| CD | Compact Disk |
| CERN | Conseil Européenne pour la Recherche Nucléaire
Europäisches Kernforschungszentrum in Genf und Wiege des World Wide Web |
<p>| CGI | Common Gateway Interface |</p>
<table>
<thead>
<tr>
<th>CSS</th>
<th>Cascading Style Sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erweiterung, um HTML / HTM-Seiten besser layouten zu können und häufig benutzte Formatvorgaben (Bold, Italic etc.) und Schrifttypen nur noch einmal zu definieren zu müssen. Das bedeutet, dass die Datenmenge einer html-Seite enorm verringert wird, da diese Vorgaben (einsmal im Header definiert) im Lauftext nur noch per Code abgefragt werden.</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
</tr>
<tr>
<td>DDoS</td>
<td>Distributed Denial of Service</td>
</tr>
<tr>
<td></td>
<td>DDoS ist eine Angriffsart auf Webserver bei der, von vielen verschiedenen Rechnern (distributed), Anfragen an einen Server gesandt werden.</td>
</tr>
<tr>
<td>DHTML</td>
<td>Dynamic HTML</td>
</tr>
<tr>
<td></td>
<td>dynamische Erweiterung von HTML</td>
</tr>
<tr>
<td>DMMV</td>
<td>Deutscher Multimedia Verband</td>
</tr>
<tr>
<td>DOM</td>
<td>Document Object Model</td>
</tr>
<tr>
<td></td>
<td>Das DOM legt fest, welche Komponenten eines Dokumentes beispielsweise für eine Programmiersprache zugänglich sind. Die Programmiersprache regelt dabei, wie der Zugriff erfolgt, das DOM gibt vor, was zugreifbar ist. Hinter jeder Sprache, die etwa im Web-Browser die client-seitige Behandlung von HTML-Dokumenten ermöglicht, steckt implizit ein Document Object Model. Dadurch ist es beispielsweise möglich per JavaSkript ein Bild gegen ein anders auszutauschen.</td>
</tr>
<tr>
<td>DoS</td>
<td>Denial of Service</td>
</tr>
<tr>
<td></td>
<td>siehe DDoS</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DSG</td>
<td>Datenschutzgesetz</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line-Technologie</td>
</tr>
<tr>
<td></td>
<td>DSL bietet eine Technologie, um das Internet mit 1,5 Million Bits pro Sekunde über Kupferleitungen zu betreiben.</td>
</tr>
<tr>
<td>DTD</td>
<td>Document-Type-Definition</td>
</tr>
<tr>
<td>DVB</td>
<td>Digital Video Broadcast</td>
</tr>
<tr>
<td>DVB-RCS</td>
<td>Digital Video Broadcast – Return Cannel over Satellite</td>
</tr>
<tr>
<td></td>
<td>Im Gegensatz zu DVB werden Daten in beiden Richtungen übertragen.</td>
</tr>
</tbody>
</table>
DVD

Digital Versatile Disc

Die DVD soll als universeller Multimediastandard Compact-Discs, Videokassetten, CD-ROMs und PC-Wechselplatten ablösen.

Man unterscheidet:

- **DVD-5**: einseitig mit 1 Schicht: Kapazität 4,7 GB, MPEG-Video Spielzeit ca. 133 Minuten
- **DVD-9**: einseitig mit 2 Schichten: Kapazität 8,5 GB, MPEG-Video Spielzeit ca. 241 Minuten
- **DVD-10**: zweiseitig mit 1 Schicht: Kapazität 9,4 GB, MPEG-Video Spielzeit ca. 266 Minuten
- **DVD-18**: zweiseitig mit 2 Schichten: Kapazität 17 GB, MPEG-Video Spielzeit ca. 482 Minuten

EDGE

Evolved Data for GSM Evolution

EDGE ist wie UMTS eine Technik der dritten Mobilfunkgeneration (3G)

EU

Europäische Union

FTI

Forschungs-& Technologieinformation der TU Graz

FTP

File Transfer Protocol

GIF

Graphics Interchange Format

verlustfreies Bildkomprimierungsformat mit maximal 256 Farben.

GPRS

General Packet Radio Service

GSM

Global System for Mobile Communications

Handheld

ein Computer im Westentaschenformat

HDSL

High-Bitrate Digital Subscriber Line

HIS

Hyperwave Information Server

HTML

HyperText Markup Language

HTTP

HyperText Transfer Protocol

Hyper-G

Der Vorgänger von Hyperwave

IBL

Institut für Industriebetriebslehre TU Graz

IBM

International Business Machines

IDEALS

Reorganisationskonzept nach G. Nadler

IE

Microsoft Internet Explorer

IICM

das erste selbstständige Informatikinstitut der TU Graz gegründet als Ordinariat für Informationsverarbeitung im Jahr 1977

IMAP

Internet Message Access Protocol

ISDN

Intergrated Services Digital Network

ISO

International Standardisation Organisation

IST

Arbeitsgruppe IST (Institut für Softwaretechnologie)

IT

Informationstechnologie

ITU

International Telecommunication Union

IWA

Informationswertanalyse
<table>
<thead>
<tr>
<th>Abk.</th>
<th>Definition/Aufgaben</th>
</tr>
</thead>
</table>
| JPEG | Joint Photographic Experts Group
Bildkomprimierungsverfahren (verlustbehaftet); bekannte JPEG-Formate sind: *.jpg, *.jpeg |
| JPG | File-Endung für JPEG-Dateien |
| KIWA | Kommunikations- und Informationswertanalyse |
| Ku Band | Frequenzband zwischen 10,7 und 12,75 MHz, in dem die meisten europäischen
Rundfunksatelliten Fernseh- und Hörfunkprogramme abstrahlen. |
| LCD | Liquid Crystal Display
Flüssigkristallanzeige |
| MAPI | Messaging Application Program(ming) Interface |
| MS Excel | Tabellenkalkulationsprogramm von Microsoft |
| MS Word | Textverarbeitungsprogramm von Microsoft |
| MUCH | Museum Unseres Computer Hinterhofes |
| MUPID | Mehrzweck Universell Programmierbarer Intelligenter Decoder |
| NAB | National Association of Broadcasters
US-Verband der Rundfunkanbieter |
| OCG | Österreichische Computer Gesellschaft |
| OEM | Object Exchange Model |
| OPAC | Online Public Access Catalog |
| OPAC V1.0 | Katalogbezeichnung für den ersten Katalog an der Bibliothek der TU Graz der
über das WWW verwendet werden konnte; mittlerweile deaktiviert und durch Aleph 500 ersetzt. |
| PC | Personal Computer |
| PDA | Persönlicher Digitaler Assistent
(personal digital assistant); häufig als Handheld bezeichnet. |
| PKI | Public Key Infrastructure |
| PM | Project Manager |
| PNG | Portable Network Graphics
verlustfreies Bildkomprimierungsformat |
| POP | Post Office Protocol |
| PSTN | Public Switched Telephone Network |
| RFC | Request for Comment |
| RIS | Rechtsinformationssystem des Bundeskanzleramts |
| www.ris.bka.gv.at | |
| SDSL | Single Line Digital Subscriber Line |
| SGML | Standard Generalised Markup Language (ISO 8879) |
| SMTP | Simple Mail Transfer Protocol
ein Standard-Protokoll, mit dem E-Mails im Internet verschickt werden |
| SPAM | Müll und Wurfsendungen als Email |
| SSL | Secure Socket Layer |
| | Technik, mittels der ein Web-Client den Server authentifizieren kann und der Datenverkehr
zwischen beiden verschlüsselt wird; entwickelt von Netscape und RSA Data Security |
<p>| TCP/IP | Transmission Control Protocol over Internet Protocol |</p>
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT</td>
<td>Thin Film Transistor</td>
<td>Technik bei Flachbildschirmen</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
<td></td>
</tr>
<tr>
<td>TIV</td>
<td>Telematik-Ingenieur-Verband</td>
<td></td>
</tr>
<tr>
<td>TKG</td>
<td>Telekommunikationsgesetz</td>
<td></td>
</tr>
<tr>
<td>TU</td>
<td>Technische Universität, Graz</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locators (RFC 1738)</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
<td></td>
</tr>
<tr>
<td>UWG</td>
<td>Unlauteres Wettbewerb Gesetz</td>
<td></td>
</tr>
<tr>
<td>VAMP</td>
<td>Value Analysis of Management Practices</td>
<td></td>
</tr>
<tr>
<td>VDI</td>
<td>Verband Deutscher Ingenieure</td>
<td></td>
</tr>
<tr>
<td>VDSL</td>
<td>Very (High Date Rate) Digital Subscriber Line</td>
<td></td>
</tr>
<tr>
<td>VHS</td>
<td>Video-Home-System</td>
<td></td>
</tr>
<tr>
<td>VTX</td>
<td>Videotext</td>
<td></td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
<td></td>
</tr>
<tr>
<td>WBMP</td>
<td>Wireless Bitmap</td>
<td>Bitmap-Grafikformat zur Einbindung von Grafiken in WML-Seiten. WBMP-Grafiken besitzen 1 Bit Farbtiefe.</td>
</tr>
<tr>
<td>WKO</td>
<td>Wirtschaftskammer Österreich</td>
<td></td>
</tr>
<tr>
<td>WML</td>
<td>Wireless Markup Language</td>
<td>In XML definierte Beschreibungssprache zur Darstellung von Internet-/WAP-Inhalten auf mobilen Kleinstgeräten wie Mobiltelefonen oder PDAs.</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
<td></td>
</tr>
<tr>
<td>WYSIWYG</td>
<td>What you see is what you get</td>
<td></td>
</tr>
<tr>
<td>xDSL</td>
<td>Sammelbezeichnung für alle DSL (Digital Subscriber Line) Protokolle</td>
<td></td>
</tr>
<tr>
<td>XML</td>
<td>EXtensible Markup Language;</td>
<td></td>
</tr>
<tr>
<td>Y2K</td>
<td>Year two kilo</td>
<td>Die gebräuchliche Bezeichnung für das Jahr-2000(-Problem)</td>
</tr>
</tbody>
</table>
4.5 Abbildungsverzeichnis

Abbildung 1: Struktur einer Sequence ... 16
Abbildung 2: Suchfilter des HIS .. 17
Abbildung 3: Volltextsuche am Hyperwave Information Server.. 18
Abbildung 4: Angriffspunkte bei Webservern ... 22
Abbildung 5: Akzeptanz von Medien in Jahren .. 27
Abbildung 6: Grundsätzlicher Internetzugang in Österreich 2000 ... 28
Abbildung 7: Wachstum im Sektor mobile Kommunikation [Likkanen] 29
Abbildung 8: Eingeschriebene Email ... 32
Abbildung 9: Mobile Endgeräte im Internet .. 33
Abbildung 10: Internetzugang über Satellit mit Rückkanal .. 36
Abbildung 11: Übertragungsgeschwindigkeit und Zeitrahmen ... 38
Abbildung 12: Nokia Set-Top-Box mit Fernbedienung ... 39
Abbildung 13: Honeywell WebPAD ... 40
Abbildung 14: Screenphones .. 40
Abbildung 15: Compaq iPaq Pocket PC H3630 ... 41
Abbildung 16: Designstudien von UMTS Endgeräten ... 41
Abbildung 17: Bezahlen mit dem Mobiltelefon ... 43
Abbildung 18: Tele2Mobile Position ... 44
Abbildung 19: Mind Map ... 47
Abbildung 20: Phasenschema des kreativen Denkprozesses ... 48
Abbildung 21: Hauptausswahl der IICM Datenbank ... 61
Abbildung 22: Die Relationen in der Datenbank ... 62
Abbildung 23: Präsentation einer Dissertation bei Austrian Research Centers Seibersdorf.... 64
Abbildung 24: Karteikarte einer Diplomarbeit mit Interpretation der Daten........................... 71
Abbildung 25: Visual Basic Konvertierungsprogramm ... 73
Abbildung 26: Relevante Relationen in der Datenbank ... 76
Abbildung 27: Diplomanden XML .. 79
Abbildung 28: Dissertanten HTML .. 79
Abbildung 29: Tankverschluss [Orth68] ... 86

4.6 Verzeichnis der Tabellen

Tabelle 1: Problemlösungsmethoden im Überblick ... 6
Tabelle 2: Maximale Seitengrößen für Antwortzeiten von 1 bis 10 Sekunden 18
Tabelle 3: xDSL im Überblick ... 35
Tabelle 4: Gegenüberstellung verwendeter stationärer Internet-Zugangstechnologien 37
Tabelle 5: Gruppierung der Methoden der Ideenfindung nach Verfahrensmerkmalen 49
Tabelle 6: Hauptstruktur der Präsentation .. 51
Tabelle 7: Auswertung der Suchergebnisse ... 71
Tabelle 8: Informationen aus drei Quellen ... 74
Tabelle 9: Wertanalyse Arbeitsplan (ÖNORM A 6757) ... 82
Tabelle 10: Funktionsgliederung ... 85
Tabelle 11: Chronologische Entwicklung von XML [Pott99] .. 91
4.7 Literaturverzeichnis

<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Verlag/Stelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Ich hab's! Wie man Denkblockaden mit Phantasie überwindet.</td>
<td>Vieweg Verlag Braunschweig 1984</td>
</tr>
<tr>
<td>Anonymus</td>
<td>Hackers Guide new technology - Sicherheit im Internet und im lokalen Netz</td>
<td>Markt und Technik Verlag München 1999</td>
</tr>
<tr>
<td>Barowski</td>
<td>Das professionelle 1x1 Onlinemarketing</td>
<td>Cornelson Verlag Berlin 2000</td>
</tr>
<tr>
<td>Bertha</td>
<td>Interview mit DI Eva Bertha, Direktorin der TUB in TU INFO April 2000</td>
<td></td>
</tr>
<tr>
<td>Bertha</td>
<td>Einführung in die Methoden zur Nutzung und Beschaffung wissenschaftlicher Literatur</td>
<td>TU-Graz 1999 (lecture notes)</td>
</tr>
<tr>
<td>DeBono</td>
<td>Chancen: Das Trainingsmodell für erfolgreiche Ideensuche</td>
<td>Econ-Taschenbuch-Verlag Wien 1992</td>
</tr>
<tr>
<td>Feiner</td>
<td>Developing a Web Museum on a Hypermedia System IICM, TU-Graz 1999</td>
<td>(Diplomarbeit)</td>
</tr>
<tr>
<td>Hake</td>
<td>Unterlagen zu Innovation/ Diversifikation IBL, TU-Graz 2000 (lecture notes)</td>
<td></td>
</tr>
<tr>
<td>Hake</td>
<td>Die Suche und Auswahl neuer Produkte. Die Praxis der Diversifikation</td>
<td>Verlag Moderne Industrie München 1966</td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
<td>Verlag</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Heinen91</td>
<td>Heinen Edmund [Hrsg.]: Industriebetriebslehre: Entscheidungen im Industriebetrieb</td>
<td>Gabler Verlag</td>
</tr>
<tr>
<td>Heufler87</td>
<td>Heufler Gerhard: Produkt-Design ... von der Idee zur Serienreife</td>
<td>Veritas Verlag</td>
</tr>
<tr>
<td>Holzinger00</td>
<td>Holzinger Andreas: Basiswissen Multimedia – Band 1: Technik</td>
<td>Vogel Verlag</td>
</tr>
<tr>
<td>Imai98</td>
<td>Imai Masaaki: Kaizen der Schlüssel zum Erfolg der Japaner im Wettbewerb</td>
<td>Ullstein Verlag</td>
</tr>
<tr>
<td>Infonova00</td>
<td>Infonova GmbH: Opendesk Secure E-Applications Suite</td>
<td>Infonova GmbH</td>
</tr>
<tr>
<td>Integral00</td>
<td>Integral/Fessel-GfK: Statistische Angaben zur Internetnutzung in Österreich</td>
<td>2000</td>
</tr>
<tr>
<td>IWE99</td>
<td>Forschungsstelle für Institutionellen Wandel und Europäische Integration der Österreichischen Akademie der Wissenschaften und Österreichisches Institut für Wirtschaftsforschung: Die Zukunft der mobilen Kommunikation – Neue Anwendungen für konvergente Netze</td>
<td>Wien 1999</td>
</tr>
<tr>
<td>Kappe99</td>
<td>Kappe Frank: Hyperwave Information Server</td>
<td>Hyperwave AG 1999</td>
</tr>
<tr>
<td>Kucsko00</td>
<td>Kucsko Guido, Madl Peter: doingbusiness.at</td>
<td>Microsoft / Manz Verlag</td>
</tr>
<tr>
<td>Lampe99</td>
<td>Lampe Frank: Marketing und Electronic Commerce</td>
<td>Vieweg Verlag</td>
</tr>
<tr>
<td>Lercher98</td>
<td>Lercher Hans: Wertanalyse an Informationssystemen</td>
<td>TU-Graz 1998 (Dissertation)</td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
<td>Verlag/Stelle</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Maurer00</td>
<td>New Developments in the World Wide Web and the Effects on Medicine in From PACS to Internet/Intranet Information-Systems, Multimedia and Telemedicine</td>
<td>OCG, Wien 2000</td>
</tr>
<tr>
<td>Ofner00</td>
<td>Ofner Klaus, Primus Arthur: Wertanalyse</td>
<td>IBL, TU-Graz 2000 (lecture notes)</td>
</tr>
<tr>
<td>Ofner00a</td>
<td>Ofner Klaus, Willfort Richard: Kreativitätstechniken</td>
<td>IBL, TU-Graz 2000 (lecture notes)</td>
</tr>
<tr>
<td>Orth68</td>
<td>Orth Heinrich: Die Wertanalyse als Methode industrieller Kostensenkung und Produktgestaltung</td>
<td>Gabler Verlag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wiesbaden 1968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISSN 1028-5068</td>
</tr>
<tr>
<td>Phoenix00</td>
<td>Organisches Blaulicht – Ein leuchtendes Beispiel</td>
<td>In phoenix magazin für wirtschaft, wissenschaft & forschung in der Steiermark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ausgabe 9 / September 2000</td>
</tr>
<tr>
<td>Platzer99</td>
<td>Platzer Alfred: Implementation einer Dissertationsdatenbank auf dem Hyperwave Informationsserver</td>
<td>IICM, TU-Graz 1999 (Diplomarbeit)</td>
</tr>
<tr>
<td>Pott99</td>
<td>Pott Oliver, Wielage Gunter: XML - new technology - Praxis und Referenz Markt und Technik Verlag</td>
<td>München 1999</td>
</tr>
<tr>
<td>Rauch93</td>
<td>Rauch Wolf: Einführung in die Informationswissenschaft Teil 1: Informationsvermittlung</td>
<td>Institut für Informationswissenschaft Karl-Franzens Universität Graz 1993 (lecture notes)</td>
</tr>
<tr>
<td>Sammer99</td>
<td>Sammer Peter, Feiner Johannes: MUCH Pflichtenheft</td>
<td>IICM, TU-Graz, 1999 (internal paper)</td>
</tr>
<tr>
<td>Schaller95</td>
<td>Schaller Michael: Wertanalyse als Instrument der ökologisch orientierten Produktgestaltung</td>
<td>TU-Graz 1995 (Dissertation)</td>
</tr>
<tr>
<td>Autor(s)</td>
<td>Titel</td>
<td>Verlag/Rahmen</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Thiemann98</td>
<td>Thiemann Uwe / Luig Gunnar: Microsoft FrontPage 98 – Das Handbuch</td>
<td>Microsoft Press Deutschland Unterschleißheim 1998</td>
</tr>
<tr>
<td>Ulrich75</td>
<td>Ulrich Werner: Kreativitätsförderung in der Unternehmung - Ansatzpunkte eines Gesamtkonzepts</td>
<td>Schriftenreihe des Instituts für Betriebswirtschaftliche Forschung an der Universität Zürich Bern 1975</td>
</tr>
<tr>
<td>UMTS00</td>
<td>UMTS00 Hi!Tech Das Zukunftsmagazin von Siemens Österreich Nr. 3a/2000</td>
<td></td>
</tr>
<tr>
<td>VDI95</td>
<td>VDI95 Herausgegeben vom Zentrum Wertanalyse der VDI-Gesellschaft Systementwicklung und Projektgestaltung Wertanalyse Idee-Methode-System</td>
<td>VDI Verlag Düsseldorf 1995</td>
</tr>
<tr>
<td>Weisberg89</td>
<td>Weisberg Robert: Kreativität und Begabung - was wir mit Mozart, Einstein und Picasso gemeinsam haben</td>
<td>Spektrum der Wissenschaft Heidelberg 1989</td>
</tr>
</tbody>
</table>
4.8 Webreferenzen

Stand Oktober 2000

<table>
<thead>
<tr>
<th>Anhang (Seite 102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 Webreferenzen</td>
</tr>
<tr>
<td>Stand Oktober 2000</td>
</tr>
<tr>
<td>Amtshelfer im Internet</td>
</tr>
<tr>
<td>BSI</td>
</tr>
<tr>
<td>BSI Bundesamt für Sicherheit in der Informationstechnik</td>
</tr>
<tr>
<td>DMMV Deutscher Multimedia Verband</td>
</tr>
<tr>
<td>Enitel Norwegen</td>
</tr>
<tr>
<td>Ericsson Bericht zu EDGE</td>
</tr>
<tr>
<td>GIF</td>
</tr>
<tr>
<td>Handhelds</td>
</tr>
<tr>
<td>Hyperwave</td>
</tr>
<tr>
<td>IICM</td>
</tr>
<tr>
<td>Internet über Satellit</td>
</tr>
<tr>
<td>Internationale Kalkulationsrichtlinien für Datenverarbeiter</td>
</tr>
<tr>
<td>Kalkulationsrichtlinien für Datenverarbeiter</td>
</tr>
<tr>
<td>Mind Map</td>
</tr>
<tr>
<td>Likkanen Erkki Likkanen EU Informationskommissar Powerpoint Präsentation</td>
</tr>
<tr>
<td>Netlaw – Internationale Gesetze</td>
</tr>
<tr>
<td>Nokia</td>
</tr>
<tr>
<td>Netlaw – Internationale Gesetze</td>
</tr>
<tr>
<td>Paysafecard</td>
</tr>
<tr>
<td>PDF Konvertierung</td>
</tr>
<tr>
<td>Perl</td>
</tr>
</tbody>
</table>
4.9 Normen

ÖNORM A 6750	Wertanalyse: Grundsätze, Grundbegriffe
ÖNORM A 6751	Wertanalyse zwischen Geschäftspartnern
ÖNORM A 6752	Wertanalyse-Stelle: Organisatorische Eingliederung, Stellenbeschreibung
ÖNORM A 6753	Wertanalyse-Koordinator: Aufgaben, Anforderungen
ÖNORM A 6754	Wertanalyse-Module: Grundsätze, Begriffe und Vorgangsweisen zur Bestimmung der Einflüsse auf ein Wertanalyse-Projekt
ÖNORM A 6755	Wertanalyse-Potenziale: Grundsätze, Begriffe und Vorgehensweisen zur Bestimmung der Einflüsse auf ein Wertanalyse-Projekt
ÖNORM A 6756	Wertanalyse-Funktionen: Grundbegriffe und Methodik der Wertanalyse-Funktionenarbeit
ÖNORM A 6757	Wertanalyse-Management: Planung, Durchführung und Controlling der Wertanalyse
DIN 66234, Teil 8	Bildschirmarbeitplätze, Kriterien für Benutzerfreundlichkeit
DIN 69910	Wertanalyse - Begriffe, Methode